
The Case for Malleable Stream Architectures

Christopher Batten 1, Hidetaka Aoki 2, Krste Asanović 3

1 Massachusetts Institute of Technology, Cambridge, MA, USA – cbatten@mit.edu
2 Hitachi, Ltd., Tokyo, Japan – hidetaka.aoki.rt@hitachi.com

3 University of California, Berkeley, CA, USA – krste@eecs.berkeley.edu

Stream workloads vary widely, as do proposed stream ar-
chitectures. We argue that stream processors should prior-
itize efficient temporal and spatial data-parallel execution,
while not ignoring support for temporal and spatial kernel-
parallel execution. We introduce a new malleable stream
architecture with data- and kernel-parallel mechanisms that
can be reconfigured as needed by stream applications.

1. The Landscape of Stream Workloads

Many applications can be expressed as streams of ele-
ments flowing between computational kernels. Although
stream programs are more structured than general-purpose
programs, they include surprisingly diverse forms of paral-
lelism and communication patterns. For example, consider
the toy application in Figure 1. Kernels A–C exhibit data-
level parallelism (DLP) meaning the kernel execution for one
element is independent with respect to other elements. Note
that DLP kernels can still contain data-dependent control
flow which can significantly complicate implementations.
Kernel D is not data parallel due to the feedback loop. This
stream graph also exhibits two forms of kernel-level paral-
lelism (KLP). Kernels A and B are task parallel meaning they
are on parallel branches of the stream graph. Although ker-
nel D depends on C, they are still pipeline parallel since the
kernels can execute in parallel on successive elements.

Stream applications also vary in their communication pat-
terns. For example, although each stage of an FFT appli-
cation is completely parallel it includes a more complicated
butterfly communication pattern. Moving elements between
a centralized stream buffer and copies of a DLP kernel can re-
quire global communication. Stream peeking, where a DLP
kernel references elements past the head of a stream, can cre-
ate complicated communication patterns between copies of
the DLP kernel. A study by Gordon et al. showed signifi-
cant variation in DLP and KLP (both task and pipeline paral-
lelism) as well as communication patterns (both in the static
graph and through stream peeking) across 12 stream applica-
tions [1].

2. The Landscape of Stream Architectures

A given stream workload can be executed in many differ-
ent ways, as shown in Figure 2. The temporal DLP (T-DLP)
approach executes the same kernel on a single processing
element (PE) in sequence (Fig. 2a). T-DLP amortizes con-
trol and synchronization overhead over many executions of
the same kernel. The temporal KLP (T-KLP) approach exe-
cutes different kernels on a single PE in sequence (Fig. 2b).

T-KLP can exploit producer-consumer locality by blocking
streams in software-managed local memories [2] or in stan-
dard caches [4]. The spatial DLP (S-DLP) approach executes
the same kernel on parallel PEs at the same time (Fig. 2c-d).
As with T-DLP, this approach allows for significant amortiza-
tion of control overhead. The spatial KLP (S-KLP) approach
executes different kernels on parallel PEs (Fig. 2e-f). For
pipeline-parallel kernels in an S-KLP approach we can in-
crease efficiency by using an explicit PE-to-PE network [5].

Streaming workloads often have such large quantities of
parallelism that performance is primarily limited either by
on-chip energy consumption or by off-chip memory band-
width. Our position is that programmers and architects
should first leverage energy-efficient DLP execution when-
ever possible. DLP execution mechanisms, especially tradi-
tional pipelined vector instructions (T-DLP), provide the low-
est energy per operation in control and datapath structures,
and can move and synchronize data streams in large blocks.
DLP (without data-dependent control flow) is also trivially
load balanced as opposed to the problematic load balancing
in KLP approaches.

In spite of DLP’s advantages, KLP is still valuable. A pure
DLP approach will have poor utilization for stateful kernels.
Even in the absence of stateful kernels, a pure DLP approach
may require so much buffering or off-chip memory traffic

Figure 1: Example Stream Application

Figure 2: Execution Approaches – Ai = execution of A for stream
element i. PE = processing element. T-DLP, T-KLP, S-DLP, S-KLP
= temporal/spatial, data-level/kernel-level parallel execution.



Number S-DLP T-DLP S-KLP T-KLP
of Cores Mechanisms Mechanisms Mechanisms Mechanisms Comments

Multi-Core x86 <10 1×128b * n/a Coherent Cache Cache Assuming 128 b SSE
STI Cell BE 1+8 1×128b * n/a Inter-core DMA Local Store Inter-core DMA on ring network
Tilera TILE64 64 1× 32b * n/a Static Mesh NoC Cache Hardly any DLP mechanisms
SPI Storm-1 1 16× 32b * n/a n/a Local Store Vector lanes and subword SIMD
NVIDIA GT200 30 8× 32b 4 n/a DRAM Cores must execute same kernel
Intel Larrabee >10 16× 32b n/a Coherent Cache Cache+Stream SW control of caches
MIT Scale 1 4× 32b 1-32 n/a Cache Configurable vector length
Maven ≈100/n n× 64b 1-32 Coherent Cache Cache+Stream Malleable stream architecture

Table 1: Comparison of Various Stream Architectures – A core is a control processor with vector lanes and/or subword SIMD units
(denoted by *) for spatial DLP amortization. Temporal DLP amortization indicates how many elements per lane (one element per cycle)
can be controlled with a single SIMD instruction. Spatial KLP mechanisms exploit producer-consumer locality between kernels running on
different cores while temporal KLP mechanisms exploit this locality by blocking streams between kernels running on the same core.

that we cannot fully utilize all of the PEs. The large buffers
may also detrimentally increase the per-element latency in
real-time applications. Thus, our position is that program-
mers and architects must still be able to exploit KLP, but af-
ter DLP. A related concern is that DLP kernels with signifi-
cant data-dependent control-flow may not map well to SIMD
execution resources, and so sufficient MIMD execution re-
sources must also be provided.

Table 1 lists the mechanisms used to exploit DLP and KLP
in several modern processors. Most processors either take a
DLP-focused approach (Storm-1, GT200), or a KLP-focused
approach (Cell, TILE64). Although it is possible to exploit
DLP on a TILE64 processor it is difficult to do so efficiently
since there are hardly any DLP execution mechanisms. On
the other side of the spectrum, a GT200 can only exploit DLP
and cannot support a S-KLP approach. The GT200 supports
T-KLP by wastefully buffering streams in DRAM. Notice
that most DLP mechanisms provide only S-DLP; they do not
allow one vector/SIMD instruction to control many cycles
worth of execution even though this is easier to implement
than S-DLP and more energy efficient.

3. Maven: A Malleable Stream Architecture

We are currently developing the Maven processor, a mal-
leable array of vector-thread engines suitable for both stream
workloads and general-purpose programs (see Figure 3).
Each Maven core includes a small control processor (CP), an
L1 cache, and a vector-thread lane. Vector-threading (VT)
is a new architectural technique which attempts to efficiently
intermingle vector and threaded execution on the same hard-
ware resources [3]. Maven VT lanes are much simpler than
earlier VT implementations, and they better amortize issue
logic and dependency checking overhead across vectors to
enable a very efficient T-DLP approach. Maven VT lanes
also support conditional control flow within DLP kernels
while maintaining vector amortization where possible.

The Maven CPs are interconnected through a dedicated
control network which enables one CP to send vector com-
mands to a neighboring core’s VT lane, providing an efficient
S-DLP mechanism. Essentially, Maven can be viewed as a
“sea-of-lanes”, with 10-100’s of individual vector lanes that

Figure 3: The Maven Processor – Only a portion of the sea-of-
lanes is shown (C = Core, $ = L2 Bank, CP = Control Processor)

can be ganged together to form vector-thread units (VTUs)
of various sizes. A Maven processor can be configured as
many small VTUs, a few large VTUs, or combination of
large and small VTUs. This flexibility enables the Maven
processor to efficiently implement both DLP and KLP exe-
cution approaches.

Maven’s L1 caches include stream mechanisms to exploit
producer-consumer locality, and they are interconnected with
the L2 cache banks through an on-chip mesh network. The
L2 banks form a large shareable on-chip storage to support
T-KLP execution.

We believe this emphasis on a prioritized set of DLP-
before-KLP mechanisms will provide a flexible yet efficient
substrate for future parallel workloads.

References
[1] M. Gordon et al. Exploiting coarse-grained task, data, and

pipeline parallelism in stream programs. Architectural Support
for Programming Languages and Operating Systems, Oct 2006.

[2] B. Khailany et al. A programmable 512 GOPS stream proces-
sor for signal, image, and video processing. Int’l Solid State
Circuits Conference, Feb 2007.

[3] R. Krashinsky et al. The vector-thread architecture. Int’l Symp.
on Computer Architecture, Jun 2004.

[4] J. Leverich et al. Comparing memory systems for chip multi-
processors. Int’l Symp. on Computer Architecture, Jun 2007.

[5] D. Wentzlaff et al. On-chip inteconnection architecture of the
tile processor. IEEE Micro, 27(5):15–31, Sep 2007.


