
The Maven Vector-Thread Architecture
Yunsup Lee1, Rimas Aviźienis1, Alex Bishara1, Richard Xia1, Derek Lockhart2,

Christopher Batten2, Krste Asanović1

1Parallel Computing Laboratory, UC Berkeley
2Computer Systems Laboratory, Cornell University

1 Motivation

Future manycore processors
will be energy-constrained,
and thus the primary metric for
evaluating these architectures
will be their energy-efficiency.
In this work, we investigate
new architectural and mi-
croarchitectural mechanisms
which enable a wider array of
applications to be mapped to
energy-efficient vector units.

2 Architectural Patterns

Three different architectural patterns (excluding subword-SIMD and SIMT) were
evaluated in terms of their performance, energy efficiency and area. Maven is a
new vector-thread architecture, which is based on a vector-SIMD architecture, adds
minimal hardware to support irregular DLP well, and is considerably simpler to
implement than previous vector-thread designs.

3 Maven Programming Methodology

4 Maven Tile Microarchitecture

We focus on comparing the various architectural design patterns with respect to a
single data-parallel tile. Example tiles are a MIMD tile, a vector tile with four
single-lane cores, or one four-lane core. To manage complexity of many design
points, we developed a library of parameterized synthesizable RTL components.

Tile Configurations

Maven Core Microarchitecture

5 Evaluation Framework

Toolflow

An Example VLSI Layout

Core 0 Core 1 Core 2

Core 3

CP I$

VU I$

D$
XBAR

1.8m
m

3.3mm

6 Evaluation Results

We first compare tile configurations based on their cycle time and area before exploring the impact of various
microarchitectural optimizations. We then compare implementation efficiency and performance of the Maven VT
pattern against the MIMD, and vector-SIMD patterns for the six application kernel.

Area & Cycle Time

mimd-c4 vsimd
+bi

vt-c4v1 vt-c4v1
+bi

vt-c1v4
+bi+2s

r32

r64

r128

r256

c1v4r256
c4v1r256

r256

r256+b
r256+bi

r256+2s
r256+2s+d

r256

r256+m
c

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N
or

m
al

iz
ed

A
re

a

ctrl
reg
mem
fp
int
cp
i$
d$

!"#$%&'()"#

*"+,'-
./()0)1(2-
3.45&2(/,6-

7589

:"/(2-
;',(-
755<9

!=12,-
:45,-
7#09

!"!#$%&'() *&+,-*(.$*/* (0. *0*1
!"!#$%&'2&)*2,-*(1$)&. &01 *0*(
!"!#$%&'*)/)&),-*)&$)2* &0) *0*+
!"!#$%&')32)++,-))*$)+/ &0. *0).
45"!#$%&4*')3267" (+2,-)*($((* 302 *0(.
45"!#$%*4&')3267"))&,-*(.$)3) (0+ *0&2
48$%&4*')32 &)/,-*2)$(*/ 20(*0&.
48$%&4*')3267 &1&,-*&.$).* 302 *0(*
48$%&4*')3267" &&3,-*.)$)+/ 30+ *0()
48$%&4*')3267"6)5 &1+,-))3$(1& 30+ *0()
48$%&4*')3267"6)56# &*1,-*2/$(11 30+ *0(2
48$%*4&')3267"6)5)13,-***$*2. (0+ *0&)
48$%*4&')3267"6)56!%))(,-**/$*.(&01 *0&)

Performance and Energy Efficiency

Impact of Additional Physical Registers, Intra-Lane Regfile Banking, and Additional Per-Bank Integer ALUs

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
Normalized Tasks / Sec

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

N
or

m
al

iz
ed

E
ne

rg
y

/T
as

k

r32

r64

r128

r256

r32

r64
r128

r256
r128 r256 r128 r256

mimd-c4
vt-c4v1
vt-c4v1+b
vt-c4v1+bi

mimd-c4 vt-c4v1 vt-c4v1+b vt-c4v1+bi

r32
r64
r128
r256

r32
r64
r128
r256

r128
r256

r128
r256

0

5

10

15

20

25

30

E
ne

rg
y

/T
as

k
(u

J)

ctrl
reg
mem
fp
int

cp
i$
d$
leak

Impact of Density-Time Execution and Stack-Based Convergence Schemes / Impact of Memory Coalescing

2.0 4.0 6.0 8.0 10.0 12.0 14.0
Normalized Tasks / Sec

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

E
ne

rg
y

/T
as

k FIFO

FIFO+dt

1-stack
1-stack+dt 2-stack

2-stack+dt
cmv

+FIFO

cmv
+2-stack+dt

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized Tasks / Sec

1

2

3

4

5

6

N
or

m
al

iz
ed

E
ne

rg
y

/T
as

k

vec ld/st

uT ld/st

uT ld/st + mem coalescing

Implementation Efficiency and Performance for MIMD, vector-SIMD, and VT Patterns Running Application Kernels

0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

E
ne

rg
y

/T
as

k

r32

mlane

mcore

0.5 1.0 1.5

r32

mlane

mcore

1.0 2.0 3.0

r32 mcore/mlane

0.5 1.0 1.5 2.0 2.5

r32

mlane

mcore

0.5 1.0 1.5 2.0

r32

mlane

mcore

0.5 1.0 1.5

r32
mlane

mcore

Normalized Tasks / Second / Area

viterbi radix sort kmeans dither physics sim. string search

7 Conclusions

1. The Maven vector-thread architecture is more area and energy efficient than MIMD
architectures on regular DLP and (surprisingly) on irregular DLP

2. The Maven vector-thread architecture is a promising alternative to traditional vector-SIMD
architectures, providing greater efficiency and easier programmability

3. Using real RTL implementations and a standard ASIC toolflow is necessary to
compare energy-optimized future architectures

For more details, see our ISCA ’11 paper below or use the QR code on the right with a barcode reader.
”Exploring the Tradeoffs between Programmability and Efficiency in Data-Parallel Accelerators”

This work was supported in part by Microsoft (Award #024263) and Intel (Award #024894, equipment donations) funding and by matching funding from U.C. Discovery
(Award #DIG07-10227). The authors acknowledge and thank Jiongjia Fang and Ji Kim for their help writing application kernels, Christopher Celio for his help writing
Maven software and developing the vector-SIMD instruction set, and Hidetaka Aoki for his early feedback on the Maven microarchitecture.

Yunsup Lee — 577C Soda Hall, Berkeley, CA 94720 — yunsup@cs.berkeley.edu — http://www.cs.berkeley.edu/˜yunsup

