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1 Motivation

Future manycore processors
will be energy-constrained,
and thus the primary metric for
evaluating these architectures
will be their energy-efficiency.
In this work, we investigate
new architectural and mi-
croarchitectural mechanisms
which enable a wider array of
applications to be mapped to
energy-efficient vector units.

2 Architectural Patterns

Three different architectural patterns (excluding subword-SIMD and SIMT) were
evaluated in terms of their performance, energy efficiency and area. Maven is a
new vector-thread architecture, which is based on a vector-SIMD architecture, adds
minimal hardware to support irregular DLP well, and is considerably simpler to
implement than previous vector-thread designs.

3 Maven Programming Methodology

4 Maven Tile Microarchitecture

We focus on comparing the various architectural design patterns with respect to a
single data-parallel tile. Example tiles are a MIMD tile, a vector tile with four
single-lane cores, or one four-lane core. To manage complexity of many design
points, we developed a library of parameterized synthesizable RTL components.

Tile Configurations

Maven Core Microarchitecture

5 Evaluation Framework

Toolflow

An Example VLSI Layout
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6 Evaluation Results

We first compare tile configurations based on their cycle time and area before exploring the impact of various
microarchitectural optimizations. We then compare implementation efficiency and performance of the Maven VT
pattern against the MIMD, and vector-SIMD patterns for the six application kernel.
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Performance and Energy Efficiency

Impact of Additional Physical Registers, Intra-Lane Regfile Banking, and Additional Per-Bank Integer ALUs
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Impact of Density-Time Execution and Stack-Based Convergence Schemes / Impact of Memory Coalescing
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Implementation Efficiency and Performance for MIMD, vector-SIMD, and VT Patterns Running Application Kernels
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7 Conclusions

1. The Maven vector-thread architecture is more area and energy efficient than MIMD
architectures on regular DLP and (surprisingly) on irregular DLP

2. The Maven vector-thread architecture is a promising alternative to traditional vector-SIMD
architectures, providing greater efficiency and easier programmability

3. Using real RTL implementations and a standard ASIC toolflow is necessary to
compare energy-optimized future architectures

For more details, see our ISCA ’11 paper below or use the QR code on the right with a barcode reader.
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