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Abstract

We present a taxonomy and modular implementation approach for data-parallel accelerators, includ-

ing the MIMD, vector-SIMD, subword-SIMD, SIMT, and vector-thread (VT) architectural design

patterns. We introduce Maven, a new VT microarchitecture based on the traditional vector-SIMD

microarchitecture, that is considerably simpler to implement and easier to program than previous

VT designs. Using an extensive design-space exploration of full VLSI implementations of many

accelerator design points, we evaluate the varying tradeoffs between programmability and imple-

mentation efficiency among the MIMD, vector-SIMD, and VT patterns on a workload of compiled

microbenchmarks and application kernels. We find the vector cores provide greater efficiency than

the MIMD cores, even on fairly irregular kernels. Our results suggest that the Maven VT microar-

chitecture is superior to the traditional vector-SIMD architecture, providing both greater efficiency

and easier programmability.
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1 Introduction

Data-parallel kernels dominate the computational workload in a wide variety of demanding appli-

cation domains, including graphics rendering, computer vision, audio processing, physical simula-

tion, and machine learning. Specialized data-parallel accelerators [10, 31, 8, 23, 15] have long been

known to provide greater energy and area efficiency than general-purpose processors for codes with

significant amounts of data-level parallelism (DLP). With continuing improvements in transistor

density and an increasing emphasis on energy efficiency, there has recently been growing interest in

DLP accelerators for mainstream computing environments. These accelerators are usually attached

to a general-purpose host processor, either on the same die or a separate die. The host processor

executes system code and non-DLP application code while distributing DLP kernels to the acceler-

ator. Surveying the wide range of data-parallel accelerator cores in industry and academia reveals

a general tradeoff between programmability (how easy is it to write software for the accelerator?)

and efficiency (energy/task and tasks/second/area). In this paper, we examine multiple alternative

data-parallel accelerators to quantify the efficiency impact of microarchitectural features intended

to simplify programming or expand the range of code that can be executed.

We first introduce a set of five architectural design patterns for DLP cores in Section 2, quali-

tatively comparing their expected programmability and efficiency. The MIMD pattern [10] flexibly

supports mapping data-parallel tasks to a collection of simple scalar or multithreaded cores, but

lacks mechanisms for efficient execution of regular DLP. The vector-SIMD [28, 31] and subword-

SIMD [8] patterns can significantly reduce the energy on regular DLP, but can require complicated

programming for irregular DLP. The single-instruction multiple-thread (SIMT) [17] and vector-

thread (VT) [15] patterns are hybrids between the MIMD and vector-SIMD patterns that attempt to

offer alternative tradeoffs between programmability and efficiency.

When reducing these high-level patterns to an efficient VLSI design, there is a large design

space to explore. In Section 3, we present a common set of parameterized synthesizable microar-

chitectural components and show how these can be combined to form complete RTL designs for

the different architectural design patterns, thereby reducing total design effort and allowing a fairer

comparison across patterns. In this section, we also introduce Maven, a new VT microarchitec-

ture. Our modular design strategy revealed a much simpler and more efficient implementation than

the earlier Scale VT design [15, 3, 13, 14]. Maven [2, 16] is based on a vector-SIMD microar-

chitecture with minimal changes to enable the improved programmability from VT, instead of the

decoupled cluster microarchitecture of Scale. Another innovation in Maven is to use the same RISC

ISA for both vector and scalar code, greatly reducing the effort required to develop an efficient VT

compiler. The Scale design required a separate clustered ISA for vector code, which complicated

compiler development [9].

To concretely evaluate and compare the efficiency of these patterns, we have generated and
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analyzed hundreds of complete VLSI layouts for the MIMD, vector-SIMD, and VT patterns using

our parameterized microarchitecture components targeting a modern 65 nm technology. Section 4

describes our methodology for extracting area, energy, and performance numbers for a range of

compiled microbenchmarks and application kernels. Section 5 presents and analyzes our results.

Our results show that vector cores are considerably more efficient in both energy and area-

normalized performance than MIMD cores, although the MIMD cores are usually easier to program.

Our results also suggest that the Maven VT microarchitecture is superior to the traditional vector-

SIMD architecture, providing greater efficiency and a simpler programming model. For both VT

and vector-SIMD, multi-lane implementations are usually more efficient than multi-core single-lane

implementations and can be easier to program as they require less partitioning and load balancing.

Although we do not implement a SIMT machine, some initial analysis indicates SIMT will be less

efficient than VT but should be easier to program.

1.1 Collaboration, Previous Publications, and Funding

This thesis is a result of a collaborative group project. Other people have made direct contributions

to the ideas and results that are included in this thesis. The Maven VT core was developed by Krste

Asanović, Christopher Batten, myself, and a group of students from 2007 through 2011. Christo-

pher Batten was the lead architect for Maven. He helped direct the development and evaluation

of the architecture, microarchitecture, RTL, compiler, microbenchmarks, and application kernels.

Christopher was responsible for the Maven instruction set architecture, C++ compiler, program-

ming support libraries, assembly test suite, microbenchmarks, and application kernels. I started

working on the project from 2008, and later took the lead on improving the Maven architecture

to better support irregular DLP from 2010 when Christopher graduated. I was responsible for the

microarchitecture and the RTL implementation of the Maven VTU, and several microarchitectural

optimizations including banking, per-bank integer ALUs, and density-time execution. I also worked

on the initial Maven C++ compiler port, developed the Maven functional simulator, and brought up

the CAD toolflow. Rimas Avizienis took the lead on the microarchitecture and the RTL implemen-

tation of the control processor, multithreaded MIMD processor, and the vector memory unit. Rimas

also wrote the Maven proxy kernel, integrated the cache timing model, and helped on various CAD

toolflow issues. Alex Bishara took the lead on the microarchitecture and the RTL implementation

of the 1-stack, and 2-stack pending vector fragment buffer, and wrote several application kernels.

Richard Xia took the lead on the microarchitecture and RTL implementation of the dynamic mem-

ory coalescer, wrote several application kernels, and developed a tool that draws graphs by analyzing

hundreds of data points. Both Alex and Richard developed an infrastructure to manage hundreds of

machines to execute many RTL simulation, synthesis, place-and-route, gate-level simulation, and

power simulation jobs simultaneously. Derek Lockhart took the lead on writing vector-SIMD ver-

sions of microbenchmarks and application kernels. Christopher Celio took the lead on the definition
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of the traditional vector instruction set architecture, and wrote several application kernels. Hidetaka

Aoki made significant contributions to some of the very early ideas about single-lane VTUs. Finally,

Krste Asanović was integral in all aspects of the project.

Some of the figures and content in this thesis are adapted from previous publications, including

“Exploring the Tradeoffs between Programmability and Efficiency in Data-Parallel Accelerators”

from ISCA 2011 [16], and Christopher Batten’s thesis “Simplified Vector-Thread Architectures for

Flexible and Efficient Data-Parallel Accelerators” [2]. More specifically, the contributions of this

thesis over the previous publications include: in Section 2, additional discussion of each architec-

tural pattern, and execution diagrams for irregular DLP, in Section 3, example of banked register

file read port scheduling, example and more details about the convergence schemes, and more de-

tails about the memory coalescing scheme, in Section 4, more configurations in Table 1, additional

microbenchmarks and discussion, and more details about the programming methodology with ex-

amples, in Section 5, more example VLSI layouts, new data points in Figure 16, and more detailed

energy results for the microarchitectural optimizations.

This work was supported in part by Microsoft (Award #024263) and Intel (Award #024894,

equipment donations) funding and by matching funding from U.C. Discovery (Award #DIG07-

10227).
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2 Architectural Design Patterns for Data-Parallel Accelerators

Data-parallel applications can be categorized in two dimensions: the regularity with which data

memory is accessed and the regularity with which the control flow changes. Regular data-level

parallelism has well structured data accesses where the addresses can be compactly encoded and are

known well in advance of when the data is ready. Regular DLP also has well structured control flow

where the control decisions are either known statically or well in advance of when the control flow

actually occurs. Irregular data-level parallelism might have less structured data accesses where the

addresses are more dynamic and difficult to predict, and might also have less structured control flow

with data-dependent control decisions. Irregular DLP might also include a small number of inter-

task dependencies that force a portion of each task to wait for previous tasks to finish. Eventually a

DLP kernel might become so irregular that it is better categorized as task-level parallelism.

Figure 1 uses simple loops to illustrate the spectrum from regular to irregular DLP. The regular

loop in Figure 1(a) includes unit-stride accesses (A[i],C[i]), strided accesses (B[2*i]), and shared

accesses (x). The loop in Figure 1(b) uses indexed accesses (E[C[i]],D[A[i]]). The loop in

Figure 1(c) includes a data-dependent conditional to choose the correct shared constant, while the

irregular loop in Figure 1(d) includes conditional accesses (B[i],C[i]) and computation. The

irregular loop in Figure 1(e) includes an inner loop with a complex data-dependent exit condition.

There have been several studies which demonstrate that full DLP applications contain a mix of

regular and irregular DLP [29, 15, 27, 18]. Accelerators that can handle a wider variety of DLP

are more attractive than those which are restricted to just regular DLP for many reasons. First, it

is possible to improve performance and energy-efficiency even on irregular DLP. Second, even if

the performance and energy-efficiency on irregular DLP is similar to a general-purpose processor,

by keeping the work on the accelerator we make it easier to exploit regular DLP inter-mingled with

irregular DLP. Finally, a consistent way of mapping both regular and irregular DLP simplifies the

programming methodology. The rest of this section presents five architectural patterns for the design

of data-parallel accelerators, and describes how each pattern handles both regular and irregular DLP.

for ( i = 0; i < n; i++ )

C[i] = x * A[i] + B[2*i];

(a) Regular DA & Regular CF

for ( i = 0; i < n; i++ )

x = ( A[i] > 0 ) ? y : z;

C[i] = x * A[i] + B[i];

(c) Regular DA & Irregular CF

for ( i = 0; i < n; i++ )

E[C[i]] = D[A[i]] + B[i];

(b) Irregular DA & Regular CF

for ( i = 0; i < n; i++ )

if ( A[i] > 0 )

C[i] = x * A[i] + B[i];

(d) Irregular DA & Irregular CF

for ( i = 0; i < n; i++ )

C[i] = false; j = 0;

while ( !C[i] & (j < m) )

if ( A[i] == B[j++] )

C[i] = true;

(e) Irregular DA & Irregular CF

Figure 1: Different Types of Data-Level Parallelism – Examples expressed in a C-like pseudocode and
are ordered from regular DLP (i.e., regular data access (DA) and control flow (CF)) to irregular DLP (i.e.,
irregular data access (DA) and control flow (CF)). (from [2] and [16])
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2.1 MIMD Architectural Design Pattern

The multiple-instruction multiple-data (MIMD) pattern is perhaps the simplest approach to

building a data-parallel accelerator. A large number of scalar cores are replicated across a single

chip. Programmers can map each data-parallel task to a separate core, but without any dedicated

DLP mechanisms, it is difficult to gain an energy-efficiency advantage when executing DLP appli-

cations. These scalar cores can be extended to support per-core multithreading which helps improve

performance by hiding various latencies. Figure 2(a) shows the programmer’s logical view and an

example implementation for the multithreaded MIMD pattern. All of the design patterns include

a host thread (HT) as part of the programmer’s logical view. The HT runs on the general-purpose

processor and is responsible for application startup, configuration, interaction with the operating

system, and managing the data-parallel accelerator. We refer to the threads that run on the data-

parallel accelerator as microthreads (µTs), since they are lighter weight than the threads which run

on the general-purpose processor. The primary advantage of the MIMD pattern is the flexible pro-

gramming model, and since every core can execute a fully independent task, there should be little

difficulty in mapping both regular and irregular DLP applications. This can simplify parallel pro-

gramming compared to the other design patterns, but the primary disadvantage is that this pattern

does little to improve the energy efficiency of DLP applications.

The pseudo-assembly in Figure 3(a) illustrates how we might map a portion of a simple irregular

loop in Figure 1(d) to each µT. The first ten instructions divide the work among the µTs such that

each thread works on a different consecutive partition of the input and output arrays. Notice that all

µTs redundantly load the shared scalar value x (line 11). This might seem trivial, but the lack of a

specialized mechanism to handle shared loads and possibly also shared computation can adversely

impact many regular DLP codes. Similarly there are no specialized mechanisms to take advantage

of the regular data accesses. Figure 4(a) shows an execution diagram corresponding to the pseudo-

assembly in Figure 3(a) for a 2-core, 4-µT implementation with two-way multithreading illustrated

in Figure 2(a). The scalar instructions from each µT are interleaved in a fixed pattern. It is very

natural to map the data-dependent conditional to a scalar branch (line 15) which simply skips over

the unnecessary work when possible. It is also straight-forward to implement conditional loads

and stores of the B and C arrays by simply placing them after the branch. The execution diagram

shows how the µTs are coherent (execute in lock-step) before the branch and then diverge after the

data-dependent conditional with µT0 and µT3 quickly moving on to the next iteration. After a few

iterations the µTs will most likely be completely diverged.

The recently proposed 1000-core Illinois Rigel accelerator is a good example of the MIMD

pattern with a single µT per scalar core [10]. Sun’s 8-core Niagara processors exemplify the spirit

of the multithreaded MIMD pattern with 4–8 threads per core for a total of 32–64 threads per

chip [12, 21]. The Niagara processors are good examples of the multithreading pattern, although

they are not specifically data-parallel accelerators. Niagara threads are heavier-weight than µTs,
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Figure 2: Architectural Design Patterns – Programmer’s logical view and a typical core microarchitecture
for five patterns: (a) MIMD, (b) vector-SIMD, (c) subword-SIMD, (d) SIMT, and (e) VT. HT = host thread,
CT = control thread, CP = control processor, µT = microthread, VIU = vector issue unit, VMU = vector
memory unit. (from [2] and [16])
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1 div m, n, nthr

2 mul t, m, tidx

3 add a_ptr, t

4 add b_ptr, t

5 add c_ptr, t

6

7 sub t, nthr, 1

8 br.neq t, tidx, ex

9 rem m, n, nthr

10 ex:

11 load x, x_ptr

12

13 loop:

14 load a, a_ptr

15 br.eq a, 0, done

16

17 load b, b_ptr

18 mul t, x, a

19 add c, t, b

20 store c, c_ptr

21

22 done:

23 add a_ptr, 1

24 add b_ptr, 1

25 add c_ptr, 1

26

27 sub m, 1

28 br.neq m, 0, loop

(a) MIMD

1 load x, x_ptr

2

3 loop:

4 setvl vlen, n

5 load.v VA, a_ptr

6 load.v VB, b_ptr

7 cmp.gt.v VF, VA, 0

8

9 mul.sv VT, x, VA, VF

10 add.vv VC, VT, VB, VF

11 store.v VC, c_ptr, VF

12

13 add a_ptr, vlen

14 add b_ptr, vlen

15 add c_ptr, vlen

16

17 sub n, vlen

18 br.neq n, 0, loop

(b) Vector-SIMD

1 br.gte tidx, n, done

2

3 add a_ptr, tidx

4 load a, a_ptr

5 br.eq a, 0, done

6

7 add b_ptr, tidx

8 add c_ptr, tidx

9

10 load x, x_ptr

11 load b, b_ptr

12 mul t, x, a

13 add c, t, b

14 store c, c_ptr

15 done:

(c) SIMT

1 load x, x_ptr

2 mov.sv VZ, x

3

4 loop:

5 setvl vlen, n

6 load.v VA, a_ptr

7 load.v VB, b_ptr

8 mov.sv VD, c_ptr

9 fetch.v ut_code

10

11 add a_ptr, vlen

12 add b_ptr, vlen

13 add c_ptr, vlen

14

15 sub n, vlen

16 br.neq n, 0, loop

17 ...

18

19 ut_code:

20 br.eq a, 0, done

21 mul t, z, a

22 add c, t, b

23 add d, tidx

24 store c, d

25 done:

26 stop

(d) VT

Figure 3: Pseudo-Assembly for Irregular DLP Ex-
ample – Pseudo-assembly implements the loop in Fig-
ure 1(d) for the (a) MIMD, (b) vector-SIMD, (c) SIMT,
and (d) VT patterns. Assume * ptr and n are inputs.
Vi = vector register i, VF = vector flag register, *.v = vec-
tor command, *.vv = vector-vector op, *.sv = scalar-
vector op, nthr = number of µTs, tidx = current mi-
crothread’s index. (from [2] and [16])

and Niagara is meant to be a stand-alone processor as opposed to a true coprocessor. Even so,

the Niagara processors are often used to execute both regular and irregular DLP codes, and their

multithreading enables good performance on these kinds of codes [32]. These MIMD accelerators

can be programmed using general-purpose parallel programming frameworks such as OpenMP [25]

and Intel’s Thread Building Blocks [26], or in the case of the Rigel accelerator, a custom task-based

framework is also available [11].

2.2 Vector-SIMD Architectural Design Pattern

In the vector single-instruction multiple-data (vector-SIMD) pattern a control thread (CT) uses

vector memory instructions to move data between main memory and vector registers, and vector

arithmetic instructions to operate on vectors of elements at once. As shown in Figure 2(b), one way

to think of this pattern is as if each CT manages an array of µTs that execute in lock-step; each µT

is responsible for one element of the vector and the hardware vector length is the number of µTs

(e.g., four in Figure 2(b)). In this context, µTs are sometimes referred to as virtual processors [34].

Unlike the MIMD pattern, the HT in the vector-SIMD pattern only interacts with the CTs and does

not directly manage the µTs. Even though the HT and CTs must still allocate work at a coarse-grain
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(a) MIMD Execution Diagram

(b) Vector-SIMD Execution Diagram

(c) SIMT Execution Diagram (d) VT Execution Diagram

Figure 4: Execution Diagrams for Irregular DLP Example – Executions are for the loop in Figure 1(d)
for the (a) MIMD, (b) vector-SIMD, (c) SIMT, and (d) VT patterns. CP = control processor, VIU = vector
issue unit, VMU = vector memory unit. (from [2])
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amongst themselves via software, this configuration overhead is amortized by the hardware vector

length. The CT in turn distributes work to the µTs with vector instructions enabling very efficient

execution of fine-grain DLP. In a typical vector-SIMD core, the CT is mapped to a control processor

(CP) and the µTs are mapped both spatially and temporally across one or more vector lanes in the

vector unit. The vector memory unit (VMU) handles executing vector memory instructions, and the

vector issue unit (VIU) handles the dependency checking and eventual dispatch of vector arithmetic

instructions.

Figures 3(b) shows the pseudo-assembly corresponding to the loop in Figure 1(d). Unit-stride

vector memory instructions (lines 5–6,11) efficiently move consecutive blocks of data in and out

of vector registers. A vector-vector arithmetic instruction (line 10) efficiently encode a regular

arithmetic operation across the full vector of elements, and a combination of a scalar load and a

scalar-vector instruction (lines 1,9) can easily handle shared accesses. In the vector-SIMD pattern

the hardware vector length is not fixed by the instruction set but is instead stored in a special control

register. The setvl instruction takes the application vector length (n) as an input and writes the

minimum of the application vector length and the hardware vector length to the given destination

register vlen (line 4). As a side-effect, the setvl instruction sets the active vector length which

specifies how many of the µTs are active and should participate in a vector instruction. Software

can use the setvl instruction to process the vectorized loop in blocks equal to the hardware vector

length without knowing what the actual hardware vector length is at compile time. The setvl

instruction will naturally handle the final iteration when the application vector length is not evenly

divisible by the hardware vector length; setvl simply sets the active vector length to be equal to

the final remaining elements. This technique is called stripmining and enables a single binary to

handle varying application vector lengths while still running on many different implementations

with varying hardware vector lengths. Note that a vector flag is used to conditionally execute the

vector multiply, addition, and store instructions (lines 9–11). More complicated irregular DLP

with nested conditionals can quickly require many independent flag registers and complicated flag

arithmetic [30].

Figure 4(b) shows the execution diagram corresponding to the pseudo-assembly in Figure 3(b)

for a two-lane, four-µT implementation depicted in Figure 2(b). The vector memory commands

(lines 5–6,11) are broken into two parts: the address portion goes to the VMU which will issue

the request to memory while the register write/read portion goes to the VIU. For vector loads, the

register writeback waits until the data returns from memory and then controls writing the vector

register file two elements per cycle over two cycles. Notice that the VIU/VMU are decoupled

from the vector lanes to allow the implementation to overlap processing multiple vector loads. The

vector arithmetic operations (lines 7,9–10) are also processed two elements per cycle over two

cycles. Note that some µTs are inactive because the corresponding vector flag is false. The temporal

mapping of µTs to the same lane is an important aspect of the vector-SIMD pattern. We can easily
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imagine using a larger vector register file to support longer vector lengths that would keep the vector

unit busy for tens of cycles. The fact that one vector command can keep the vector unit busy for

many cycles decreases instruction issue bandwidth pressure. So as in the MIMD pattern we can

exploit instruction-level parallelism by adding support for executing multiple instructions per µT

per cycle, but unlike the MIMD pattern it may not be necessary to increase the issue bandwidth,

since one vector instruction occupies a vector functional unit for many cycles. Almost all vector-

SIMD accelerators will take advantage of multiple functional units and also support bypassing (also

called vector chaining) between these units. A final point to note is how the control processor

decoupling and multi-cycle vector execution enables the control thread to continue executing while

the vector unit is still processing older vector instructions. This decoupling means the control thread

can quickly work through the loop overhead instructions (lines 13–18) so that it can start issuing the

next iteration of the stripmine loop as soon as possible.

Figures 3(b) and 4(b) illustrate three ways that the vector-SIMD pattern can improve energy

efficiency: (1) some instructions are executed once by the CT instead of for each µT as in the

MIMD pattern (lines 1,13–18); (2) for operations that the µTs do execute (lines 5–11), the CP and

VIU can amortize various overheads such as instruction fetch, decode, and dependency checking

over vlen elements; and (3) for memory accesses which the µTs still execute (lines 5–6,11) the

VMU can efficiently move the data in large blocks.

The Berkeley Spert-II system exemplifies this pattern, and its eight-lane vector-SIMD T0 pro-

cessor helps accelerate neural network, multimedia, and digital signal processing applications [31].

The Spert-II system uses hand-coded assembly to vectorize critical kernels, but vectorizing compil-

ers are also possible [5].

2.3 Subword-SIMD Architectural Design Pattern

The subword single-instruction multiple-data (subword-SIMD) architectural pattern shown in

Figure 2(c) captures some important differences from the vector-SIMD pattern. In this pattern, the

“vector-like unit” is really a full-word scalar datapath with standard scalar registers often corre-

sponding to a double-precision floating-point unit. The pattern leverages these existing scalar dat-

apaths and registers to execute multiple narrow-width operations in a single cycle. Some subword-

SIMD variants support bitwidths larger than the widest scalar datatype, in which case the datapath

can only be fully utilized with subword-SIMD instructions. Other variants unify the CT and SIMD

unit such that the same datapath is used for both control, scalar arithmetic, and subword-SIMD

instructions. Subword-SIMD has short vector lengths that are exposed to software as wide fixed-

width datapaths, while vector-SIMD has longer vector lengths exposed to software as a true vector

of elements. In vector-SIMD, the vector length is exposed in such a way that the same binary

can run on many different implementations with varying hardware resources, while code for one

subword-SIMD implementation is usually less portable to other implementations. Subword-SIMD
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often requires shuffling elements via special permute instructions, and this leads to a large amount

of cross-element communication. Vector-SIMD has more flexible data-movement operations which

alleviates the need for software data shuffling.

The IBM Cell processor is a good example of this pattern, with eight data-parallel cores each

including a unified 128-bit subword-SIMD datapath that can execute scalar operations as well as

16× 8-bit, 8× 16-bit, 4× 32-bit, or 2× 64-bit operations [8]. In terms of programming methodol-

ogy, many modern compilers include intrinsics for accessing subword-SIMD operations, and some

compilers include optimization passes that can automatically vectorize regular DLP. In this work,

we focus less on the subword-SIMD pattern, because the vector-SIMD pattern is better suited to

exploiting large amounts of data-parallelism as opposed to a more general-purpose workload with

smaller amounts of data-parallelism.

2.4 SIMT Architectural Design Pattern

The single-instruction multiple-thread (SIMT) pattern is a hybrid pattern with a programmer’s

logical view similar to the MIMD pattern but an implementation similar to the vector-SIMD pat-

tern. As shown in Figure 2(d), the SIMT pattern supports a large number of µTs but no CTs; the HT

is responsible for directly managing the µTs (usually through specialized hardware mechanisms). A

µT block is mapped to a SIMT core which contains vector lanes similar to those found in the vector-

SIMD pattern. However, since there is no CT, the VIU is responsible for amortizing overheads and

executing the µT’s scalar instructions in lock-step when they are coherent. The VIU also manages

the case when the µTs execute a scalar branch possibly causing them to diverge. µTs can sometimes

reconverge through static hints in the scalar instruction stream or dynamic hardware mechanisms.

SIMT only has scalar loads and stores, but the VMU can include a memory coalescing unit to dy-

namically detect when these scalar accesses can be converted into vector-like memory operations.

The SIMT pattern usually exposes the concept of a µT block to the programmer: barriers are some-

times provided for intra-block synchronization, and application performance depends heavily on the

coherence and coalescing opportunities within a µT block.

The loop in Figure 1(d) maps to the SIMT pattern in a similar way as in the MIMD pattern except

that each µT is usually only responsible for a single element as opposed to a range of elements

(see Figure 3(c)). Since there are no control threads and thus nothing analogous to the vector-

SIMD pattern’s setvl instruction, a combination of dedicated hardware and software is required to

manage the stripmining. The host thread tells the hardware how many µT blocks are required for the

computation and the hardware manages the case when the number of requested µT blocks is greater

than what is available in the actual hardware. In the common case where the application vector

length is not statically guaranteed to be evenly divisible by the µT block size, each µT must use

a scalar branch to verify that the computation for the corresponding element is actually necessary

(line 1).
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Figure 4(c) shows the execution diagram corresponding to the pseudo-assembly in Figure 3(c)

for a two-lane, four-µT implementation shown in Figure 2(d). Scalar branch management corre-

sponding to the branch at line 1 will be discussed later. Without a control thread, all four µTs redun-

dantly perform address calculations (lines 3,7–8) and the actual scalar load instruction (lines 4,11)

even though these are unit-stride accesses. The VMU dynamically checks all four addresses, and

if they are consecutive, then the VMU coalesces these accesses into a single vector-like memory

operation. Also notice that since there is no control thread to amortize the shared load at line 10,

all four µTs must redundantly load x. The VMU may be able to dynamically coalesce this into one

scalar load which is then broadcast to all four µTs. The VMU attempts to coalesce well-structured

stores (line 14) as well as loads. Since the µTs are coherent when they execute the scalar multiply

and addition instructions (lines 12–13), the VIU should be able to execute them with vector-like

efficiencies. After issuing the scalar branch corresponding to line 5, the VIU waits for the µT block

to calculate the branch resolution based on each µT’s scalar data. The VIU then turns these branch

resolution bits into a dynamically generated vector flag, which is used to mask off inactive elements

on either side of the branch. Various SIMT implementations handle the details of µT divergence

differently, but the basic idea is the same. In contrast to vector-SIMD (where the control processor

is decoupled from the vector unit making it difficult to access the vector flag registers), SIMT can

avoid fetching instructions when the vector flag bits are all zero. So if the entire µT block takes

the branch at line 5, then the VIU can completely skip the instructions at lines 7–14 and start the

µT block executing at the branch target. Also note that conditional memory accesses are naturally

encoded by simply placing them after the branch (lines 10–11,14).

Figures 3(c) and 4(c) illustrate some of the issues that can prevent the SIMT pattern from achiev-

ing vector-like energy-efficiencies on regular DLP. The µTs must redundantly execute instructions

that would otherwise be amortized onto the CT (lines 1–3,7–10). Regular data accesses are encoded

as multiple scalar accesses (lines 4,11,14) which then must be dynamically transformed (at some

energy overhead) into vector-like memory operations. In addition, the lack of a control thread ne-

cessitates per µT stripmining calculations (lines 1) and prevents access-execute decoupling which

can efficiently tolerate memory latencies. Even so, the ability to achieve vector-like efficiencies on

coherent µT instructions helps improve SIMT energy-efficiency compared to the MIMD pattern.

The real strength of the SIMT pattern, however, is that it provides a simple way to map complex

data-dependent control flow with µT scalar branches (line 5).

The NVIDIA Fermi graphics processor is a good example of this pattern with 32 SIMT cores

each with 16 lanes suitable for graphics as well as more general data-parallel applications [23]. Var-

ious SIMT frameworks such as Microsoft’s DirectX Compute [19], NVIDIA’s CUDA [22], Stan-

ford’s Brook [4], and OpenCL [24] allow programmers to write high-level code for the host thread

and to specify the scalar code for each µT as an annotated function. A combination of off-line

compilation, just-in-time optimization, and hardware actually executes the data-parallel program.
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2.5 VT Architectural Design Pattern

The vector-thread (VT) pattern is also a hybrid pattern but takes a very different approach from

the SIMT pattern. As shown in Figure 2(e), the HT manages a collection of CTs and each CT in

turn manages an array of µTs. Similar to the vector-SIMD pattern, this allows various overheads

to be amortized onto the CT, and control threads can also execute vector memory commands to

efficiently handle regular data accesses. Unlike the vector-SIMD pattern, the CT does not execute

vector arithmetic instructions but instead uses a vector fetch instruction to indicate the start of a

scalar instruction stream that should be executed by the µTs. The VIU allows the µTs to execute

coherently, but as in the SIMT pattern, they can also diverge after executing scalar branches.

Figure 3(d) shows the VT pseudo-assembly corresponding to the loop in Figure 1(d). Strip-

mining (line 5), loop control (line 11–16), and regular data accesses (lines 6–7) are handled just

as in the vector-SIMD pattern. Instead of vector arithmetic instructions, we use a vector fetch in-

struction (line 9) with one argument which indicates the instruction address at which all µTs should

immediately start executing (e.g., the instruction at the ut code label). All µTs execute these scalar

instructions (lines 20–24) until they reach a stop instruction (line 26). An important part of the

VT pattern is the interaction between vector registers as accessed by the control thread, and scalar

registers as accessed by each µT. In this example, the unit-stride vector load at line 6 writes the

vector register VA with vlen elements. Each µT’s scalar register a implicitly refers to that µT’s

element of the vector register (e.g., µT0’s scalar register a implicitly refers to the first element of the

vector register VA). In other words, the vector register VA as seen by the control thread and the scalar

register a as seen by the µTs are two views of the same register. The µTs cannot access the con-

trol thread’s scalar registers, since this would significantly complicate control processor decoupling.

Shared accesses are thus communicated with a scalar load by the control thread (line 1) and then

a scalar-vector move instruction (lines 2,8) which copies the given scalar register value into each

element of the given vector register. A scalar branch (line 20) is used to encode data-dependent

control flow. µTs thus skip the instructions at 21–24 when the branch condition is true. The con-

ditional store is encoded by placing the store after the branch (line 24) similar to the MIMD and

SIMT examples.

Figure 4(d) illustrates how the pseudo-assembly in Figure 3(d) would execute on the implemen-

tation pictured in Figure 2(e). An explicit scalar-vector move instruction (line 2) writes the scalar

value into each element of the vector register two elements per cycle over two cycles. The unit-stride

vector load instructions (lines 6–7) execute as in the vector-SIMD pattern. The control processor

then sends the vector fetch instruction to the VIU. The VIU fetches the branch instruction (line 20)

and issues them across the µTs. Similar to the SIMT pattern, the VIU waits until all µTs resolve the

scalar branch. If all µTs either take or do not take the branch, then the VIU can start fetching from

the appropriate address. If some µTs take the branch while others do not, then the µT diverge and

the VIU needs to keep track of which µT are executing which side of the branch.
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Figures 3(d) and 4(d) illustrate how VT achieves vector-like energy-efficiency while maintaining

the ability to flexibly map irregular DLP. Control instructions are executed once by the control thread

per-loop (lines 1–2) or per-iteration (lines 11–16). A scalar branch (line 20) provides a convenient

way to map complex data-dependent control flow. The VIU is still able to amortize instruction

fetch, decode, and dependency checking for vector arithmetic instructions (lines 21–23). VT uses

the same vector memory instructions to efficiently move blocks of data between memory and vector

registers (lines 6–7). There are however some overheads including the extra scalar-vector move

instruction (line 2), vector fetch instruction (line 9), and µT stop instruction (line 26).

The Scale VT processor is an early example of the VT pattern [15]. Scale’s programming

methodology uses either a combination of compiled code for the control thread and hand-coded

assembly for the µTs, or a preliminary version of a vectorizing compiler written specifically for

Scale [9].

22



3 Microarchitecture of MIMD, Vector-SIMD, and VT Tiles

In this section, we describe in detail the microarchitectures used to evaluate the various patterns.

A data-parallel accelerator will usually include an array of tiles and an on-chip network to connect

them to each other and an outer-level memory system, as shown in Figure 5(a). Each tile includes

one or more tightly coupled cores and their caches, with examples in Figure 5(b)–(d). In this

paper, we focus on comparing the various architectural design patterns with respect to a single

data-parallel tile. The inter-tile interconnect and memory system are also critical components of a

DLP accelerator system, but are outside the scope of this work.

3.1 Microarchitectural Components

We developed a library of parameterized synthesizable RTL components that can be combined to

construct MIMD, vector-SIMD and VT tiles. Our library includes long-latency functional units,

a multi-threaded scalar integer core, vector lanes, vector memory units, vector issue units, and

blocking and non-blocking caches.

A set of long-latency functional units provide support for integer multiplication and division,

and IEEE single-precision floating-point addition, multiplication, division, and square root. These

units can be flexibly retimed to meet various cycle-time constraints.

Our scalar integer core implements a RISC ISA, with basic integer instructions executed in a

five-stage, in-order pipeline but with two sets of request/response queues for attaching the core to

the memory system and long-latency functional units. A two-read-port/two-write-port (2r2w-port)

32-entry 32-bit register file holds both integer and floating-point values. One write port is for the

integer pipeline and the other is shared by the memory system and long-latency functional units.

The core can be multithreaded, with replicated architectural state for each thread and a dynamic

thread scheduling stage at the front of the pipeline.

Figure 6 shows the microarchitectural template used for all the vector-based cores. A control

(a) Data-Parallel
Accelerator

(b) MIMD Tile
with Four Cores

(c) Vector-SIMD Tile with Four
Single-Lane Cores

(d) Vector-SIMD Tile
with One Four-Lane

Core

Figure 5: Example Data-Parallel Tile Configurations (from [16])
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(a) Baseline Vector-SIMD and VT Core Microarchitecture (b) Banked Register File w/
Per-Bank Integer ALUs

Figure 6: Vector-Based Core Microarchitecture – (a) Each vector-based core includes one or more vector
lanes, vector memory unit, and vector issue unit; PVFB = pending vector fragment buffer, PC = program
counter, VAU = vector arithmetic unit, VLU = vector load-data writeback unit, VSU = vector store-data read
unit, VGU = address generation unit for µT loads/stores, VLDQ = vector load-data queue, VSDQ = vector
store-data queue, VLAGU/VSAGU = address generation unit for vector loads/stores, µTAQ = µT address
queue, µTLDQ = µT load-data queue, µTSDQ = µT store-data queue. Modules specific to vector-SIMD or
VT cores are highlighted. (b) Changes required to implement intra-lane vector register file banking with
per-bank integer ALUs. (from [16])
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processor (CP) sends vector instructions to the vector unit, which includes one or more vector lanes,

a vector memory unit (VMU), and a vector issue unit (VIU). The lane and VMU components are

nearly identical in all of the vector-based cores, but the VIU differs significantly between the vector-

SIMD and VT cores as discussed below.

Our baseline vector lane consists of a unified 6r3w-port vector register file and five vector

functional units (VFUs): two arithmetic units (VAUs), a load unit (VLU), a store unit (VSU), and an

address-generation unit (VGU). Each VAU contains an integer ALU and a subset of the long-latency

functional units. The vector register file can be dynamically reconfigured to support between 4–32

registers per µT with corresponding changes in maximum vector length (32–1). Each VFU has a

sequencer to step through elements of each vector operation, generating physical register addresses.

The vector memory unit coordinates data movement between the memory system and the

vector register file using decoupling [6]. The CP splits each vector memory instruction into a vector

memory µop issued to the VMU and a vector register access µop sent to the VIU, which is eventually

issued to the VLU or VSU in the vector lane. A load µop causes the VMU to issue a vector’s worth

of load requests to the memory system, with data returned to the vector load data queue (VLDQ).

As data becomes available, the VLU copies it from the VLDQ to the vector register file. A store

µop causes the VMU to retrieve a vector’s worth of data from the vector store data queue (VSDQ)

as it is pushed onto the queue by the VSU. Note that for single-lane configurations, the VMU still

uses wide accesses between the VLDQ/VSDQ and the memory system, but moves data between the

VLDQ/VSDQ and the vector lane one element at a time. Individual µT loads and stores (gathers and

scatters) are handled similarly, except addresses are generated by the VGU and data flows through

separate queues.

The main difference between vector-SIMD and VT cores is how the vector issue unit fetches

instructions and handles conditional control flow. In a vector-SIMD core, the CP sends individual

vector instructions to the VIU, which is responsible for ensuring that all hazards have been resolved

before sending vector µops to the vector lane. Our vector-SIMD ISA supports data-dependent con-

trol flow using conventional vector masking, with eight single-bit flag registers. A µT is prevented

from writing results for a vector instruction when the associated bit in a selected flag register is

clear.

In our VT core, the CP sends vector-fetch instructions to the VIU. For each vector fetch, the

VIU creates a new vector fragment consisting of a program counter, initialized to the start address

specified in the vector fetch, and an active µT bit mask, initialized to all active. The VIU then

fetches and executes the corresponding sequential instruction stream across all active µTs, sending

a vector µop plus active µT mask to the vector lanes for each instruction. The VIU handles a

branch instruction by issuing a compare µop to one of the VFUs, which then produces a branch-

resolution bit mask. If the mask is all zeros or ones, the VIU continues fetching scalar instructions

along the fall-through or taken path. Otherwise, the µTs have diverged and so the VIU splits the

25



current fragment into two fragments representing the µTs on the fall-through and taken paths, and

continues to execute the fall-through fragment while placing the taken fragment in a pending vector

fragment buffer (PVFB). The µTs can repeatedly diverge, creating new fragments, until there is

only one µT per fragment. The current fragment finishes when it executes a stop instruction. The

VIU then selects another vector fragment from the PVFB for execution. Once the PVFB is empty,

indicating that all the µTs have stopped executing, the VIU can begin processing the next vector-

fetch instruction.

Our library also includes blocking and non-blocking cache components with a rich set of

parameters: cache type (instruction/data), access port width, refill port width, cache line size, total

capacity, and associativity. For non-blocking caches, additional parameters include the number of

miss-status-handling registers (MSHR) and the number of secondary misses per MSHR.

3.2 Constructing Tiles

MIMD cores combine a scalar integer core with integer and floating-point long-latency functional

units, and support from one to eight µTs per core. Vector cores use a single-threaded scalar integer

core as the CP connected to either a vector-SIMD or VT VIU, with one or more vector lanes and

a VMU. To save area, the CP shares long-latency functional units with the vector lane, as in the

Cray-1 [28].

We constructed two tile types: multi-core tiles consist of four MIMD (Figure 5(b)) or single-

lane vector cores (Figure 5(c)), while multi-lane tiles consist of a single CP connected to a four-lane

vector unit (Figure 5(d)). All tiles have the same number of long-latency functional units. Each tile

includes a shared 64-KB four-bank data cache (8-way set-associative, 8 MSHRs, 4 secondary misses

per MSHR), interleaved by 64-byte cache line. Request and response arbiters and crossbars man-

age communication between the cache banks and cores (or lanes). Each CP has a 16-KB private

instruction cache and each VT VIU has a 2-KB vector instruction cache. Hence the overall instruc-

tion cache capacity (and area) is much larger in multi-core (64–72 KB) as compared to multi-lane

(16–18 KB) tiles.

3.3 Microarchitectural Optimizations: Banking and Density-Time Execution

We explored a series of microarchitectural optimizations to improve performance, area, and energy

efficiency of our baseline vector-SIMD and VT cores. The first was using a conventional banked
vector register file to reduce area and energy (see Figure 6(b)). While a monolithic 6r3w register

file simplifies vector lane design by allowing each VFU to access any element on any clock cycle,

the high port count is expensive. Dividing the register file into four independent banks each with

one write and two read ports significantly reduces register file area while keeping capacity constant.

A crossbar connects banks to VFUs. The four 2r1w banks result in a greater aggregate bandwidth of
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(c) Monolithic VRF with Density-Time
Execution

(d) Banked VRF with Density-Time Execution

Figure 7: Example Read Port Scheduling – All four examples execute an add, a multiply, a µTAQ access,
and a µTSDQ access µop. A hardware vector length of eight, and an active µT mask of 11101001 is assumed.
VRF = vector register file, R = read port, C = cycle, + = addition, * = multiplication, a = µTAQ access, st =
µTSDQ access.

eight read and four write ports. We take advantage of by adding a third VAU (VAU2) to the vector

lane and rearranging the assignment of functional units to VAUs.

Figure 7(a) illustrates an example read port scheduling with a monolithic 6r3w vector register

file. The add µop is issued at cycle 0 to use read ports R0 and R1 for eight cycles. The multiply µop

is scheduled to access its operands with R2 and R3 starting at cycle 1. µTAQ and µTSDQ access

µops for a µT store instruction are done through R4 and R5 at cycle 3 and 4 respectively. Figure 7(b)

illustrates how the read port scheduling changes with vector register file banking. Registers within

a µT are co-located within a bank, and µTs are striped across banks. As a VFU sequencer iterates

through the µTs in a vector, it accesses a new bank on each clock cycle. The VIU must schedule

vector µops to prevent bank conflicts, where two VFUs try to access the same bank on the same

clock cycle. Note that the µTSDQ access cannot be scheduled at cycle 4 because of a bank conflict
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with the add operation. The operation is instead scheduled at cycle 6, resulting a total of 14 cycles

to finish, which is 2 cycles longer compared to 12 cycles with a monolithic vector register file. Read

ports are simply disabled for inactive µTs (µT1, µT2, and µT4) in both cases.

We developed another optimization for the banked design, which removes integer units from

the VAUs and instead adds four per-bank integer ALUs directly connected to the read and write

ports of each bank, bypassing the crossbar (see Figure 6(b)). This saves energy, and also helps

performance by avoiding structural hazards and increasing peak integer throughput to four integer

VAUs. The area cost of the extra ALUs is small relative to the size of the register file.

We also investigated density-time execution [30] to improve vector performance on irregular

codes. The baseline vector machine takes time proportional to the vector length for each vector

instruction, regardless of the number of inactive µTs. For example, if the hardware vector length is

8, it will take 8 cycles to execute a vector instruction, even if only five µTs are active (Figure 7(a)).

Codes with highly irregular control flow often cause significant divergence between the µTs, splin-

tering a vector into many fragments of only a few active µTs each. Density-time improves vector

execution efficiency by “compressing” the vector fragment and only spending cycles on active µTs.

With density-time execution in Figure 7(c), it only takes 5 cycles per vector fragment rather than 8

cycles. As illustrated in Figure 7(d), bank scheduling constraints reduce the effectiveness of density-

time execution in banked register files. Rather than compressing inactive µTs from the whole vector,

only inactive µTs from the same bank can be compressed. In Figure 7(d), µT3 and µT7 from the

same bank are both active, resulting no actual cycle savings with density-time execution. Multi-

lane machines have even greater constraints, as lanes must remain synchronized, so we only added

density-time to single-lane machines.

3.4 Microarchitectural Optimizations: Dynamic Fragment Convergence

The PVFB in our baseline VT machine is a FIFO queue with no means to merge vector fragments.

Figure 8(c) shows the execution of code in Figure 8(a) with the baseline FIFO queue. We assume

a hardware vector length of four, and the outcome of branches b.0, b.1, and b.2 for all four µTs

are shown as part of the execution trace in Figure 8(b). The execution starts at the vector-fetched

PC (0x00) with an active µT bit mask, initialized to all active (1111). Since op.0 is not a branch

instruction, the FIFO vector fragment selection policy chooses the PC+4 fragment, which consists of

a PC (0x04) and the same µT mask (1111), for execution. Once branch b.0 is resolved, the selection

policy chooses to stash the taken fragment {0x20,1000} to the PVFB for later execution and execute

the not-taken fragment {0x08,0111}. Vector fragments {0x1c,0100} and {0x20,0010} are next

saved as a result of branches b.1 and b.2. Once the current fragment {0x24,0001} encounters a

stop instruction, the selection policy chooses to dequeue a fragment from the PVFB to execute.

Note that once a vector becomes fragmented, those fragments will execute independently until all

µTs execute a stop instruction, even when fragments have the same PC (0x20).
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ut_code:

0x00: op.0

0x04: b.0 skip1

0x08: op.1

0x0c: b.1 skip0

0x10: op.2

0x14: b.2 skip1

0x18: op.3

skip0:

0x1c: op.4

skip1:

0x20: op.5

0x24: stop

(a) Pseudo-Assembly

uT3 uT2 uT1 uT0

----------------------------------

0x00 0x00 0x00 0x00

0x04/T 0x04/NT 0x04/NT 0x04/NT

0x08 0x08 0x08

0x0c/T 0x0c/NT 0x0c/NT

0x10 0x10

0x14/T 0x14/NT

0x18

0x1c 0x1c

0x20 0x20 0x20 0x20

0x24 0x24 0x24 0x24

(b) Trace Executing 8(a) with four µTs

0x00 1111op.0

0x04 1111b.0

0x08 0111op.1

0x0c 0111b.1

0x10 0011op.2

0x14 0011b.2

0x18 0001op.3

0x1c 0001op.4

0x20 0001op.5

PC
Active

uT MaskInst. PC 3210
Mask

FIFO PVFB

enq {0x20,1000}

choose not-taken

choose not-taken

choose not-taken
enq {0x1c,0100}

enq {0x20,0010}

deq {0x1c,0100}

0x20 1000

0x20 1000
0x1c 0100

0x20 1000
0x1c 0100

0x20 0010

0x20 1000op.5
switch to {0x20,1000}

0x24 1000stop

0x1c 0100op.4

0x20 0100op.5

0x24 0100stop

0x20 0010op.5

0x24 0010stop

switch to {0x1c,0100}

switch to {0x20,0010}

deq {0x20,0010}

A

B

C

D

E

F

A

B

C

E

F

deq {0x20,1000}
0x1c 0100

D
0x20 0010

0x24 0001stop

0x20 0010

: PVFB Operation

(c) Execution with a FIFO queue

0x00 1111op.0

0x04 1111b.0

0x08 0111op.1

0x0c 0111b.1

0x10 0011op.2

0x14 0011b.2

0x18 0001op.3

0x1c 0101op.4

0x20 1111op.5

0x24 1111stop

PC
Active

uT MaskInst. PC 3210
Mask

Stack PVFB

push {0x20,1000}

choose earlier

choose earlier

choose earlier

merge with {0x1c,0100}

push {0x1c,0100}

push {0x20,0010}

pop {0x20,1010}

0x20 1000

0x1c 0100
0x20 1000

0x1c 0100
0x20 1010

merge with {0x20,1010}

A

B

C

D

E

A

B

C

E

pop {0x1c,0100}
0x20 1010

D

(d) Execution with the 1-stack scheme

Figure 8: Executing Irregular DLP Code with Forward Branches Only – Example (a) pseudo-assembly,
(b) trace (PCs are aligned to match the 1-stack scheduling), (c) execution diagram illustrating how the FIFO
queue manages divergence, (d) execution diagram illustrating how the 1-stack scheme manages divergence.
T = taken, NT = not-taken, PVFB = pending vector fragment buffer.
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loop:

0x00: op.0

0x04: b.0 skip

0x08: op.1

skip:

0x0c: b.1 loop

0x10: op.2

0x14: b.2 loop

0x18: op.3

0x1c: stop

(a) Pseudo-Assembly

uT3 uT2 uT1 uT0

----------------------------------

0x00 0x00 0x00 0x00

0x04/T 0x04/NT 0x04/T 0x04/T

0x08

0x0c/T 0x0c/T 0x0c/NT 0x0c/NT

0x10 0x10

0x14/T 0x14/T

0x00 0x00 0x00 0x00

0x04/NT 0x04/NT 0x04/NT 0x04/NT

0x08 0x08 0x08 0x08

0x0c/NT 0x0c/NT 0x0c/NT 0x0c/NT

0x10 0x10 0x10 0x10

0x14/NT 0x14/NT 0x14/NT 0x14/NT

0x18 0x18 0x18 0x18

0x1c 0x1c 0x1c 0x1c

(b) Trace Executing 9(a) with four µTs

0x00 1111op.0

0x04 1111b.0

0x08 0100op.1

0x0c 1111b.1

0x00 1100op.0

PC
Active

uT MaskInst. PC 3210
Mask

Stack PVFB

push {0x0c,1011}

choose earlier

merge with {0x0c,1011}

choose earlier

pop {0x0c,1011}

push {0x10,0011}

push {0x18,1100}

0x0c 1011

0x10 0011

A

B

C

A

B

C

E

pop {0x10,0011}
D

0x04 1100b.0

0x08 1100op.1
0x0c 1100b.1

0x10 1111op.2
0x14 1111b.2

0x00 0011op.0

0x04 0011b.0

0x08 0011op.1
0x0c 0011b.1

0x10 0011op.2
0x14 0011b.2

0x18 1111op.3

0x1c 1111stop

merge with {0x18,1100}F

all uTs went not-taken

all uTs went not-taken
merge with {0x10,0011}D

choose earlierE

all uTs went not-taken

all uTs went not-taken

0x18 1100

pop {0x18,1100}
F

0x18 1100

(c) Execution with the 1-stack scheme

0x00 1111op.0

0x04 1111b.0

0x08 0100op.1

0x0c 1111b.1

0x10 0011op.2

PC
Active

uT MaskInst. PC 3210
Mask

Current Stack

push {0x0c,1011}

choose earlier

merge with {0x0c,1011}

choose earlier

pop {0x0c,1011}

swap stacks

0x0c 1011

0x00 1111

A

B

C

A

B

pop {0x00,1111}
F

0x14 0011b.2

0x00 1111op.0
0x04 1111b.0

0x08 1111op.1

0x0c 1111b.1

0x10 1111op.2
0x14 1111b.2

0x18 1111op.3
0x1c 1111stop

all uTs went taken
no active uT, swap stacks
switch to {0x00,1111}

E

all uTs went not-taken

all uTs went not-taken

all uTs went not-taken

PC 3210
Mask

Future Stack

push {0x00,1100}

push {0x00,0011}

swap stacks

0x00 1100

C

D

E

D
0x00 1111

F

: PVFB Operation

(d) Execution with the 2-stack scheme

Figure 9: Executing Irregular DLP Code with Backward Branches – Example (a) pseudo-assembly, (b)
trace (PCs are aligned to match the 2-stack scheduling), (c) execution diagram illustrating how the 1-stack
scheme manages divergence, (d) execution diagram illustrating how the 2-stack scheme manages divergence.
T = taken, NT = not-taken, PVFB = pending vector fragment buffer.
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We developed two schemes for VT machines to implement dynamic fragment convergence
in the PVFB. When a new fragment is inserted into the PVFB, both schemes will attempt to dy-

namically merge the fragment with an existing fragment if their PCs match, OR-ing their active

µT masks together. The challenge is to construct a fragment scheduling heuristic that maximizes

opportunities for convergence by avoiding the execution of fragments which are later able to merge

with other fragments in the PVFB.

Our first convergence scheme, called 1-stack, organizes the PVFB as a stack with fragments

sorted by PC address, with newly created fragments systolically insertion-sorted into the stack.

The stack vector fragment selection policy always picks the fragment with the numerically smallest

(earliest) PC among the taken and not-taken fragments, merging with the fragment at the top of

the stack PVFB when possible. The intuition behind 1-stack is to favor fragments trailing behind

in execution, giving them more chance to meet up with faster-moving fragments at a convergence

point. The execution diagram in Figure 8(d) illustrates this efficient fragment scheduling. Note that

when fragment {0x1c,0100} is pushed to the stack, the stack enforces PC ordering and keeps that

fragment on the top. Also note fragment {0x20,0010} is merged with an existing fragment in the

stack, which has the same PC 0x20. Once PC 0x1c is reached, the current fragment is merged with

the fragment at the top of the stack {0x1c,0100}, resulting fragment {0x1c,0101} to execute. Note

that the operation at PC 0x20 are now executed with all µTs active.

The 1-stack scheme performs reasonably well, but is sub-optimal for loops with multiple back-

wards branches. Fragments which first branch back for another loop iteration are treated as if they

are behind slower fragments in the same iteration and race ahead. Suppose four µTs execute pseudo-

assembly in Figure 9(a) and four µTs pick branch directions as shown in Figure 9(b). An execution

diagram in Figure 9(c) illustrates this phenomenon. As shown in the diagram, µT2 and µT3 satisfies

a loop condition such that b.1 is taken. Since the 1-stack scheme favors the smallest PC, these µT

fragments are executed to completion, only converging with the fragment at PC 0x10 on the last

iteration. This scheduling reduces the number of active µTs per instruction execution (instructions

at PC 0x00 to 0x14 are executed with an active µT mask 0011) and does not yield the optimal

execution for this type of code.

To solve this problem, our second scheme, called 2-stack, divides the PVFB into two virtual

stacks, one for fragments on the current iteration of a loop and another for fragments on a future

iteration of a loop (Figure 9(d)). Fragments created from the forward branch ({0x0c,1011}) are

pushed onto the current stack, while the fragments from backwards branches ({0x00,1100} and

{0x00,0011}) are pushed onto the future stack. Note that the selection policy only pops fragments

from the current stack. When the current stack empties, the current and future stacks are swapped

(PVFB operation E). The 2-stack implementation is similar to the 1-stack implementation, but PCs

saved in the PVFB have an extra bit in the MSB used in comparisons for ordering. This bit is

set if the fragment being inserted into the PVFB was a backwards branch to prevent this fragment
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from being chosen until all fragments on the current iteration are executed. Once no fragments of

the current iteration remain, this bit is toggled so that the next iteration’s fragments become active

candidates for selection. Implementing the 2-stack scheme in this way allows us to physically use

only one stack, exploiting the fact that we will only ever use as many entries as there are µTs.

Note that the Maven VT design only uses dynamic information such as the PC of a fragment

with no explicit static hints to aid fragment convergence as are believed to be used in SIMT archi-

tectures [23, 7]. The stack-based convergence scheme proposed in [33] and described in [7] uses

immediate postdominators as explicit yield points to guide convergence in the warp scheduler. To

know the immediate postdominator of a diverging branch, however, the control flow graph needs to

be analyzed. [7] proposes dynamic warp formation to increase the utilization of the SIMD pipeline.

Five scheduling polices were considered to maximize the number of active threads when dynami-

cally forming a warp. Among the five schemes, the program counter (DPC) policy is similar to the

1-stack convergence scheme. The intuition behind two schemes are the same: the program counter

is a good indicator of progress.

3.5 Microarchitectural Optimizations: Dynamic Memory Coalescer

The final optimization we considered is a dynamic memory coalescer for multi-lane VT vector

units (Figure 10). During the execution of a µT load instruction, each lane may generate an indi-

vidual memory address on each cycle. The memory coalescer compares the high-order bits of each

memory address and combines matching requests. The low-order bits are stored as word and byte

select bits alongside the load data buffer. The number of low-order bits should match the maximum

size of the memory response in bytes. When memory responses arrive from the cache we use the

Memory
Request Issue

Address
Comparators

Writeback Control

Vector Lanes

Data Cache Request and Response Arbiters and Crossbars

VMU
μTLDQsμTAQs

LDBWBS LDBWBS LDBWBS LDBWBS

Figure 10: Memory Coalescer Microarchitecture – A memory coalescer for multi-lane VT tiles with four
lanes. VMU = vector memory unit, µTAQ = µT address queue, µTLDQ = µT load data queue, WBS =
word/byte select buffer, LDB = load data buffer.
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word and byte select bits to select the correct portion of the response to write to each µT load data

queue, which feed back to the vector lanes.

Suppose each address contains four low-order bits, and each data cache response may contain

up to sixteen bytes. The four µT address queues issue the following load word requests: 0x001c,

0x0014, 0x0008, 0x0014. The address comparators identify that the first, second, and fourth re-

quests may be coalesced. The second and fourth requests are disabled, while the first request is

annotated with extra information that indicates that it is a coalesced request for the first, second, and

fourth lanes. The third request is left untouched. At the same time, the address comparators write

the word and byte select information to the word and byte select buffers. In this case the first, sec-

ond, and fourth requests select the fourth, second, and second words of the sixteen-byte coalesced

response, respectively. Notice how addresses need not be in ascending order and may even match

in the low-order bits.

Additional control logic must be added to the data cache arbiter to correctly route memory

responses. The arbiter must be able to write a response to multiple load data buffers but only if all

buffers are ready to receive data. A conflict occurs when a coalesced response arrives at the same

time a non-coalesced response and both wish to write to the same load data buffer. This introduces

more complex control dependencies between vector lanes.

Dynamic memory coalescing can significantly help performance on codes that use µT loads to

access memory addresses with a unit stride, as these would otherwise generate cache bank conflicts.

Similarly, codes which use µT loads to access the same memory address also benefit. This effect

diminishes with larger strides, as requests no longer occupy the same cache bank. Compared to vec-

tor memory operations, however, µT memory operations are still less efficient even with dynamic

memory coalescing for code with regular memory access patterns. Vector memory operations have

the benefit of access-execute decoupling because addresses can be computed independently of non-

memory operations. Vector memory operations may also statically determine whether accesses can

be coalesced into a single response if the stride is known statically. On the other hand, dynamic

memory coalescing for µT memory coalescing still improves the efficiency of irregular access pat-

terns with high spatial locality. We compare the effectiveness of purely using µT memory operations

with memory coalescing to using vector memory operations in Section 5.3.
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4 Evaluation Framework

This section describes the hardware and software infrastructure used to evaluate the various microar-

chitectural options introduced in the previous section, and also outlines the specific configurations,

microbenchmarks, and application kernels used in our evaluation. Figure 11 illustrates the overall

process of compiling C++ application code into a binary, generating a VLSI layout from an RTL

description of a particular machine configuration, and simulating the execution of the application to

extract area, performance, and power statistics.

4.1 Hardware Toolflow

We use our own machine definition files to instantiate and compose the parameterized Verilog RTL

into a full model for each tile configuration. We targeted TSMC’s 65-nm GPLUSTC process us-

ing a Synposys-based ASIC toolflow: VCS for simulation, Design Compiler for synthesis, and IC

Compiler for place-and-route (PAR). RTL simulation produces cycle counts. PAR produces cycle

time and area estimates. The steps in this process are depicted on the right hand side of Figure 11.

Table 1 lists IC Compiler post-PAR power estimates based on a uniform statistical probability of

Figure 11: Evaluation Framework – The software toolflow allows C++ applications to be compiled either
natively or for Maven, while the hardware toolflow transforms the Verilog RTL for a data-parallel tile into
actual layout. From this toolflow we can accurately measure area, performance (1/cycle count×cycle time),
and energy (average power× cycle count× cycle time). (from [2])
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Per Core Peak Throughput Power Total
Area

Cycle
TimeNum Num Num Arith Mem Statistical Simulated

Configuration Cores Regs µTs (ops/cyc) (elm/cyc) (mW) (mW) (mm2) (ns)

mimd-c4r32§ 4 32 4 4 4 149 137 – 181 3.7 1.10
mimd-c4r64§ 4 64 8 4 4 216 130 – 247 4.0 1.13
mimd-c4r128§ 4 128 16 4 4 242 124 – 261 4.2 1.19
mimd-c4r256§ 4 256 32 4 4 299 221 – 298 4.7 1.27

Per Core Per Lane Peak Throughput Power Total
Area

Cycle
TimeNum Num Max vlen Num Arith Mem Statistical Simulated

Configuration Cores Lanes Range Regs (ops/cyc) (elm/cyc) (mW) (mW) (mm2) (ns)

vsimd-c4v1r32 4 1 1 – 8 32 4c+ 8v 4l+ 4s 349 154 – 273 4.8 1.23
vsimd-c4v1r64 4 1 2 – 16 64 4c+ 8v 4l+ 4s 352 176 – 278 4.9 1.28
vsimd-c4v1r128 4 1 4 – 32 128 4c+ 8v 4l+ 4s 367 194 – 283 5.2 1.30
vsimd-c4v1r256 4 1 8 – 32 256 4c+ 8v 4l+ 4s 384 207 – 302 6.0 1.49

vsimd-c4v1r256+bi§ 4 1 8 – 32 256 4c+ 16v 4l+ 4s 396 213 – 331 5.6 1.37
vsimd-c1v4r256+bi§ 1 4 32 – 128 256 1c+ 16v 4l+ 4s 224 137 – 252 3.9 1.46

vt-c4v1r32 4 1 1 – 8 32 4c+ 8v 4l+ 4s 384 136 – 248 5.1 1.27
vt-c4v1r64 4 1 2 – 16 64 4c+ 8v 4l+ 4s 391 151 – 252 5.3 1.32
vt-c4v1r128 4 1 4 – 32 128 4c+ 8v 4l+ 4s 401 152 – 274 5.6 1.30
vt-c4v1r256 4 1 8 – 32 256 4c+ 8v 4l+ 4s 428 162 – 318 6.3 1.47
vt-c4v1r128+b 4 1 4 – 32 128 4c+ 8v 4l+ 4s 396 148 – 254 5.3 1.27
vt-c4v1r256+b 4 1 8 – 32 256 4c+ 8v 4l+ 4s 404 147 – 271 5.6 1.31
vt-c4v1r128+bi 4 1 4 – 32 128 4c+ 16v 4l+ 4s 439 174 – 278 5.6 1.31
vt-c4v1r256+bi 4 1 8 – 32 256 4c+ 16v 4l+ 4s 445 172 – 298 5.9 1.32

vt-c4v1r256+bi 4 1 8 – 32 256 4c+ 16v 4l+ 4s 445 172 – 298 5.9 1.32
vt-c4v1r256+bi+d 4 1 8 – 32 256 4c+ 16v 4l+ 4s 449 196 – 297 6.0 1.41
vt-c4v1r256+bi+1s 4 1 8 – 32 256 4c+ 16v 4l+ 4s 408 193 – 289 5.8 1.39
vt-c4v1r256+bi+1s+d 4 1 8 – 32 256 4c+ 16v 4l+ 4s 409 213 – 293 5.8 1.41
vt-c4v1r256+bi+2s 4 1 8 – 32 256 4c+ 16v 4l+ 4s 409 225 – 304 5.9 1.32
vt-c4v1r256+bi+2s+d§ 4 1 8 – 32 256 4c+ 16v 4l+ 4s 410 168 – 300 5.9 1.36

vt-c1v4r256+bi+2s§ 1 4 32 256 1c+ 16v 4l+ 4s 205 111 – 167 3.9 1.42
vt-c1v4r256+bi+2s+mc 1 4 32 256 1c+ 16v 4l+ 4s 223 118 – 173 4.0 1.42

Table 1: Subset of Evaluated Tile Configurations – Multi-core and multi-lane tiles for MIMD, vector-
SIMD, and VT patterns. Configurations with § are used in Section 5.4. statistical power column is from
post-PAR; simulated power column shows min/max across all gate-level simulations; configuration column:
b = banked, bi = banked+int, 2s = 2-stack, d = density-time, mc = memory coalescing; num µTs column is the
number of µTs supported with the default of 32 registers/µT; arith column: xc+ yv = x CP ops and y vector
unit ops per cycle; mem column: xl+ ys = x load elements and y store elements per cycle. (adapted from
[16])
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bit transitions, and the range of powers reported via PrimeTime across all benchmarks when us-

ing bit-accurate activity for every net simulated on a back-annotated post-PAR gate-level model.

The inaccuracy of the IC Compiler estimates and the large variance in power across benchmarks

motivated us to use only detailed gate-level simulation for energy estimates.

Complex functional units (e.g., floating-point) are implemented using Synopsys DesignWare li-

brary components, with automatic register retiming to generate pipelined units satisfying our cycle-

time constraint. The resulting latencies were: integer multiplier (3) and divider (12), floating-point

adder (3), multiplier (3), divider (7), and square-root unit (10).

We did not have access to a memory compiler for our target process, so we model SRAMs and

caches by creating abstracted “black-box” modules, with area, timing, and power models suitable

for use by the CAD tools. We used CACTI [20] to explore a range of possible implementations

and chose one that satisfied our cycle-time requirement while consuming minimal power and area.

We compared CACTI’s predicted parameter values to the SRAM datasheet for our target process

and found them to be reasonably close. Cache behavior is modeled by a cache simulator (written

in C++) that interfaces with the ports of the cache modules. The latency between a cache-line refill

request and response was set at 50 cycles. We specify the dimensions of the target ASIC and the

placement and orientation of the large black-box modules. The rest of the design (including register

files) was implemented using standard cells, all automatically placed.

4.2 Tile Configurations

We evaluated hundreds of tile configurations using our hardware toolflow. For this paper, we focus

on 25 representative configurations (see Table 1). We name configurations beginning with a prefix

designating the style of machine, followed by the number of cores (c), the number of lanes (v), and

physical registers (r) per core or lane. The suffix denotes various microarchitectural optimizations:

b = banked register file, bi = banked register file with extra integer ALUs, 1s = 1-stack convergence

scheme, 2s = 2-stack convergence scheme, d = density-time execution, mc = memory coalescing.

Each type of core is implemented with 32, 64, 128, and 256 physical registers. For the MIMD

cores, this corresponds to 1, 2, 4, and 8 µTs respectively. For the vector cores, the maximum

hardware vector length is determined by the size of the vector register file and the number of registers

assigned to each µT (4–32). The vector length is capped at 32 for all VT designs, even though some

configurations (i.e., 256 physical registers with 4 registers per µT) could theoretically support longer

vector lengths. We imposed this limitation because some structures in the VT machines (such as

the PVFB) scale quadratically in area with respect to the maximum number of active µTs. Banked

vector register file designs are only implemented for 128 and 256 physical registers.
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4.3 Microbenchmarks & Application Kernels

We selected four microbenchmarks and six larger application kernels to represent the spectrum from

regular to irregular DLP.

Figure 12 illustrates the four microbenchmarks. The vvadd microbenchmark performs a 1000-

element vector-vector floating-point addition and is the simplest example of regular DLP. The cmult

microbenchmark performs a 1000-element vector-vector floating-point complex multiplication, and

illustrates regular DLP with additional computational density and strided accesses to the arrays of

complex number objects. The mfilt microbenchmark convolves a five-element filter kernel with a

100× 100 gray-scale image under a separate mask image. It uses a regular memory access pattern

and irregular control flow. Each iteration of the loop checks whether a pixel in a mask image is

selected and only performs the convolution for selected pixels. The bsearch microbenchmark uses a

binary search algorithm to perform 1000 look-ups into a sorted array of 1000 key-value pairs. This

microbenchmark exhibits highly irregular DLP with two nested loops: an outer for loop over the

search keys and an inner while loop implementing a binary search for finding the key. We include

two VT implementations: one (bsearch) uses branches to handle intra-iteration control flow, while

the second (bsearch-cmv) uses conditional move assembly instructions explicitly inserted by the

programmer.

The viterbi kernel decodes frames of convolutionally encoded data using the Viterbi algorithm.

Iterative calculation of survivor paths and their accumulated error are parallelized across paths.

Each µT performs an add-compare-select butterfly operation to compute the error for two paths si-

multaneously, which requires unpredictable accesses to a lookup table. The rsort kernel performs

an incremental radix sort on an array of integers. During each iteration, individual µTs build local

histograms of the data, and then a parallel reduction is performed to determine the mapping to a

global destination array. Atomic memory operations are necessary to build the global histogram

structure. The kmeans kernel implements the k-means clustering algorithm. It classifies a collection

of objects, each with some number of features, into a set of clusters through an iterative process.

(a) vvadd (b) cmult (c) mfilt (d) bsearch

Figure 12: Microbenchmarks – Four microbenchmarks are used to evaluate the various architectural design
patterns. (from [2])
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Control Thread Microthread

Name vf vec ld vec st int fp ld st amo br cmv tot loop nregs

µb
m

ar
ks

vvadd 1 2u 2u 1 2 4
cmult 1 4s 2s 1 6 8 4
mfilt 1 6u 1u 10 1 12 13
bsearch-cmv 1 1u 1u 17 2 1 4 25 × 13
bsearch 1 1u 1u 15 3 5 1 26 × 10

A
pp

K
er

ne
ls viterbi 3 3u 1u, 4s 21 3 35 8

rsort 3 3u, 2s 3u 14 2 3 1 25 11
kmeans 9 7u, 3s 5u, 1s 12 6 2 2 1 1 2 40 8
dither 1 4u, 1s 5u, 1s 13 1 2 24 8
physics 4 6u, 12s 1u, 9s 5 56 24 4 16 132 × 32
strsearch 3 5u 1u 35 9 5 15 2 96 × 14

Table 2: Microbenchmark and Application Kernel Statistics for VT Implementation – Number of in-
structions listed by type. vec ld/st columns indicate numbers of both unit-stride (u) and strided (s) accesses;
loop column indicates an inner loop within the vector-fetched block; nregs column indicates number of reg-
isters a vector-fetched block requires. (adapted from [16])

App Vlen Quartiles Active µT Distribution (%)

Name 1q 2q 3q max 1–25 26–50 51–75 76–100

µb
m

ar
ks

vvadd 1000 1000 1000 1000 100.0
cmult 1000 1000 1000 1000 100.0
mfilt 1000 1000 1000 1000 3.6 4.1 9.4 82.9
bsearch-cmv 1000 1000 1000 1000 1.0 3.3 5.8 89.9
bsearch 1000 1000 1000 1000 77.6 12.4 5.1 4.8
bsearch (w/ 1-stack) 23.8 23.4 11.7 41.0
bsearch (w/ 2-stack) 10.1 26.8 49.2 13.9

A
pp

K
er

ne
ls

viterbi 32 32 32 32 100.0
rsort 1000 1000 1000 1000 100.0
kmeans 100 100 100 100 100.0
dither 72 143 185 386 0.2 0.4 0.7 98.7
physics 7 16 44 917 6.9 15.0 28.7 49.3
physics (w/ 2-stack) 4.7 13.1 28.3 53.9
strsearch 57 57 57 57 57.5 25.5 16.9 0.1
strsearch (w/ 2-stack) 14.8 30.5 54.7 0.1

Table 3: Microbenchmark and Application Kernel Data-Dependent Statistics – Application vector
length distribution indicates number of µTs used per stripmine loop assuming infinite resources. Distribution
of active µTs with a FIFO PVFB unless otherwise specified in name column. Each section sorted from most
regular to most irregular. (adapted from [16])

Assignment of objects to clusters is parallelized across objects. The minimum distance between an

object and each cluster is computed independently by each µT and an atomic memory operation

updates a shared data structure. Cluster centers are recomputed in parallel using one µT per cluster.

The dither kernel generates a black and white image from a gray-scale image using Floyd-Steinberg

dithering. Work is parallelized across the diagonals of the image, so that each µT works on a subset

of the diagonal. A data-dependent conditional allows µTs to skip work if an input pixel is white.
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The physics kernel performs a simple Newtonian physics simulation with object collision detection.

Each µT is responsible for intersection detection, motion variable computation, and location calcu-

lation for a single object. Oct-trees are also generated in parallel. The strsearch kernel implements

the Knuth-Morris-Pratt algorithm to search a collection of strings for the presence of substrings.

The search is parallelized by having all µTs search for the same substrings in different streams. The

DFAs used to model substring-matching state machines are also generated in parallel.

Table 2 reports the instruction counts and Table 3 shows the application vector length and dis-

tribution of active µTs for the VT implementations of two representative microbenchmarks and the

six application kernels. viterbi is an example of regular DLP with known memory access patterns.

rsort, kmeans, and dither all exhibit mild control flow conditionals with more irregular memory

access patterns. physics and strsearch exhibits characteristics of highly irregular DLP code: loops

with data-dependent exit conditionals, highly irregular data access patterns, and many conditional

branches.

4.4 Programming Methodology

Past accelerators usually relied on hand-coded assembly or compilers that automatically extract

DLP from high-level programming languages [1, 5, 9]. Recently there has been a renewed interest

in explicitly data-parallel programming methodologies [22, 24, 4], where the programmer writes

code for the HT and annotates data-parallel tasks to be executed in parallel on all µTs. We developed

a similar explicit-DLP C++ programming environment for Maven. Supporting such a programming

style for our VT implementation was made relatively easy by the use of a single ISA for the CT

and µTs. The software toolflow is illustrated on the left hand side of Figure 11. Note that to aid

in debugging, we produce a program binary that runs natively on our development platform along

with the binary for our target machine architecture. For all systems, a simple proxy kernel running

on the cores supports basic system calls by communicating with an application server running on

the host. More details about the programming methodology can be found in [2].

To bring up a reasonable compiler infrastructure with limited resources, we attempted to lever-

age a standard scalar compiler as much as possible. We started with a recent version of the GNU

assembler, linker, and C++/newlib compiler (version 4.4.1), which all contain support for the basic

MIPS32 instruction set. We then modified the assembler to support the new Maven scalar and vector

instructions.

Most of our efforts went into modifying the compiler back-end. We first unified the integer and

floating-point register space. Instruction templates were added for the new divide and remainder in-

structions, since the Maven ISA lacks high and low registers. Branch delay slots were also removed.

A new vector register space and the corresponding instruction templates required for register allo-

cation were added. Some of these modifications were able to leverage the GNU C++ compiler’s

built-in support for fixed-length subword-SIMD instructions. Compiler intrinsics were added for
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some of the vector instructions to enable software to explicitly generate these instructions and for

the compiler to understand their semantics. The control thread and the µTs have different perfor-

mance characteristics, so we leveraged the compiler instruction scheduling framework to create two

pipeline models for Maven: one optimized for control threads and the other optimized for µTs.

There were relatively few modifications necessary to the compiler front-end. We used the GNU

C++ compiler’s function attribute framework to add new attributes denoting functions meant to run

on the µTs for performance tuning. We were able to leverage the GNU C++ compiler’s built-in

support for fixed-length subword-SIMD instructions to create true C++ vector types.

Figure 13 illustrates how the irregular DLP loop in Figure 1(d) might be coded for various

architectural patterns. Figure 13(a) illustrates how the MIMD architectural pattern is programmed.

The VT architectural pattern can be programmed much like a SIMT machine (Figure 13(b)), in

which case programming is relatively easy but execution is less efficient. The VT pattern also allows

programmers to expend more effort in optimizing their code to hoist structured memory accesses

out as vector memory operations, and to use scalar operations (Figure 13(c)), which provides more

efficiency than is possible with a pure SIMT machine. Figure 13(d) shows how irregular DLP is

mapped to the Vector-SIMD architectural pattern. Finally, Figure 13(e) describes how we leverage

the MIMD programming model to target a multi-core VT machine.

For MIMD, a “master” µT on the multithreaded core is responsible for spawning the work on

the other remaining “worker” µTs. To support this, we first modify the proxy kernel to support mul-

tiple threads of execution and then build a lightweight user-level threading library called bthreads,

which stands for “bare threads”, on top of the proxy-kernel threads. There is one bthread for each

underlying hardware µT context. The application is responsible for managing scheduling. Spawn-

ing work is done with a BTHREAD PARALLEL RANGE macro as shown in Figure 13(a). This macro

automatically partitions the input dataset’s linear index range, creates a separate function, spawns

the function onto each µT, passes in arguments through memory, and waits for the threads to finish.

Each thread does the work from range.begin() to range.end() where range is defined by the

preprocessor macro to be different for each thread. Line 4 specifies the total number of elements

to be distributed to the worker µTs and a list of C++ variables that should be marshalled for each

worker µT. The final argument to the macro is the work to be done by each µT (lines 5–11). The

work can contain any of the other architectural design pattern programming methodologies to en-

able mapping an application to multiple cores. As illustrated in Figure 13(e), by calling the idlp vt

function inside the body of a BTHREAD PARALLEL RANGE macro we can use the bthreads library to

distribute work amongst multiple VT cores. This programming model is similar to the OpenMP

programming framework [25], where the programmer explicitly annotates the source code with

pragmas to mark parallel loops.

Figure 13(b) illustrates the Maven VT programming environment used in SIMT fashion. The

config function on line 4 takes two arguments: the number of required µT registers and the ap-
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1 void idlp_mimd( int c[], int a[], int b[],

2 int n, int x )

3 {

4 BTHREAD_PARALLEL_RANGE( n, (c,a,b,x),

5 ({

6 for ( int i = range.begin();

7 i < range.end(); i++ ) {

8 if ( a[i] > 0 )

9 c[i] = x * a[i] + b[i];

10 }

11 }));

12 }

(a) MIMD

1 void idlp_vt_simt( int c[], int a[], int b[],

2 int n, int x )

3 {

4 int blocksz = vt::config( 11, n );

5 int nblocks = ( size + blocksz - 1 ) / blocksz;

6

7 vt::HardwareVector<int*> vap(a),vbp(b),vcp(c);

8 vt::HardwareVector<int*> vxp(&x);

9 vt::HardwareVector<int> vsize(size);

10 vt::HardwareVector<int> vbsz(blocksz);

11

12 for ( int bidx = 0; bidx < nblocks; bidx++ ) {

13 vt::HardwareVector<int> vbidx(bidx);

14

15 VT_VFETCH( (vxp,vap,vbp,vcp,vsize,vbsz,vbidx),

16 ({

17 int idx = vbidx * vbsz + vt::get_utidx();

18 if ( idx < vsize ) {

19 if ( vap[idx] > 0 )

20 vcp[idx] = (*vxp) * vap[idx] + vbp[idx];

21 }

22 }));

23 }

24 vt::sync_cv(); // vector memory fence

25 }

(b) VT in SIMT fashion

1 void idlp_vt( int c[], int a[], int b[],

2 int n, int x )

3 {

4 int vlen = vt::config( 7, n );

5 vt::HardwareVector<int> vx(x);

6

7 for ( int i = 0; i < n; i += vlen ) {

8 vlen = vt::set_vlen(n-i); // stripmining

9

10 vt::HardwareVector<int*> vcp(&c[i]);

11 vt::HardwareVector<int> va, vb;

12

13 va.load(&a[i]); // unit-stride vector load

14 vb.load(&b[i]); // unit-stride vector load

15

16 VT_VFETCH( (vcp,vx,va,vb),

17 ({

18 if ( va > 0 )

19 vcp[vt::get_utidx()] = vx * va + vb;

20 }));

21 }

22 vt::sync_cv(); // vector memory fence

23 }

(c) VT

1 void idlp_vsimd( int c[], int a[], int b[],

2 int n, int x )

3 {

4 int vlen = vt::config( 9, n );

5 vt::HardwareVector<int> vx(x);

6

7 for ( int i = 0; i < n; i += vlen ) {

8 vlen = vt::set_vlen(n-i); // stripmining

9

10 vt::HardwareVector<int> vctmp;

11 vt::HardwareVector<int> va, vb, vc;

12

13 va.load(&a[i]); // unit-stride vector load

14 vb.load(&b[i]); // unit-stride vector load

15 vc.load(&c[i]); // unit-stride vector load

16

17 asm (

18 "slt.f.vv $flag1, $vzero, %[va] \n"

19 "mul.vv %[vctmp], %[vx], %[va] \n"

20 "add.vv %[vctmp], %[vctmp], %[vb] \n"

21 "mov.vv %[vc], %[vctmp], $flag1 \n"

22 : [vctmp] "=&Z"(vctmp) // outputs

23 : [va] "Z"(va), [vx] "Z"(vx), // inputs

24 [vb] "Z"(vb), [vc] "Z"(vc)

25 );

26

27 vc.store(&c[i]); // unit-stride vector store

28 }

29 vt::sync_cv(); // vector memory fence

30 }

(d) Vector-SIMD

1 void idlp_mc_vt( int c[], int a[], int b[],

2 int n, int x )

3 {

4 BTHREAD_PARALLEL_RANGE( n, (c,a,b,x),

5 ({

6 idlp_vt( &c[range.begin()],

7 &a[range.begin()],

8 &b[range.begin()],

9 range.size(), x );

10 }));

11 }

(e) Multi-core VT

Figure 13: Irregular DLP Example using Maven Programming Methodology – Code corresponds to the
loop in Figure 1(d). Roughly, code (a) compiles to assembly in Figure 3(a), code (c) compiles to assembly in
Figure 3(d), and code (d) compiles to assembly in Figure 3(b). (adapted from [16] and [2])
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plication vector. This function returns the actual number of µTs supported by the hardware (block

size), which is used to calculate the number of µT blocks on line 5. Lines 7–8 copy array base

pointers and address of x, and lines 9–10,13 copy size, block size, and block index into all µTs. A

for loop on line 12 emulates multiple µT blocks mapped to the same core. The VT VFETCH macro

on lines 15–22 takes two arguments: a list of hardware vectors, and the actual code, which should

be executed on each µT. The code within the vector-fetched block specifies what operations to per-

form on each element of the hardware vectors. This means that the C++ type of a hardware vector

is different inside versus outside the vector-fetched block. Outside the block, a hardware vector

represents a vector of elements and has type HardwareVector<T> (e.g., vsize on line 9 has type

HardwareVector<int>), but inside the block, a hardware “vector” now actually represents a single

element and has type T (e.g., vsize on lines 18 has type int). Code within a vector-fetched block

can include almost any C++ language feature including stack allocated variables, object instantia-

tion, templates, conditionals (if, switch), and loops (for, while). The primary restrictions are

that a vector-fetched block cannot use C++ exceptions nor make any system calls. After calculating

its own index on line 15, a conditional on line 16 checks to make sure the index is not greater than

the array size. Lines 19–20 contain the actual work. Line 24 performs a memory fence to ensure

that all results are visible in memory before returning from the function. Note that this is similar

to the CUDA programming methodology [22]. The address calculation on line 17 (think vbidx as

blockIdx.x, vbsz as blockDim.x, and vt::get utidx() as threadIdx.x) and the conditional

branch on line 18 closely follows the CUDA programming practice.

Figure 13(c) illustrates how the code looks like after spending more effort optimizing for the

VT architectural pattern. The output of the config function is now used to stripmine across the

application vector via the for loop on line 7. The call to set vlen on line 8 allows the stripmine

loop to naturally handle cases where size is not evenly divisible by the hardware vector length.

This eliminates the first conditional branch in Figure 13(b) to check whether the index is in bounds.

Line 5 instantiates a hardware vector containing elements of type int and initializes all elements

in the vector with the scalar value x. This shared variable will be kept in the same hardware vector

across all iterations of the stripmine loop. The structured memory accesses are turned into unit-

strided loads (line 11,13–14); vlen consecutive elements of arrays a and b are moved into the

appropriate hardware vector with the load member function. Note that the conditional store is

implemented similarly to Figure 13(b); the base pointer for the array c is copied into all elements of

the hardware vector vcp on line 10 and then a scalar store (line 19) is executed inside a conditional.

For vector-SIMD, we were able to leverage the built-in GCC vectorizer for mapping very simple

regular DLP microbenchmarks, but the GCC vectorizer could not automatically compile the larger

application kernels for the vector-SIMD tiles. For these more complicated vector-SIMD kernels,

we use a subset of our VT C++ library for stripmining and vector memory operations along with

GCC’s inline assembly extensions for the actual computation. Figure 13(d) shows how the existing
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VT programming environment is used with hand-coded assembly to map an irregular DLP loop to a

vector-SIMD machine. The same stripmining process is used on lines 4–8. Lines 13-14 are the same

unit-strided loads used in the VT programming model. The actual computation is expressed with an

inline assembly extension found on lines 17-25. Note that a conditional store is implemented with

a unit-strided load (line 15), a conditional move (line 21), and a unit-strided store (line 27).

The big reduction in programmability is shown in the progression of Figure 13. Figure 13(a)

needs explicit “coarse grain parallelization”. Explicit “data-parallelization” is required for Fig-

ure 13(b), 13(c), and 13(d). Figure 13(c) and 13(d) require factoring out, vector loads and stores,

shared data, and common work to run on the control thread. Finally, Figure 13(d) requires handling

irregular control flow with vector flags. As you go down the list, the level of programmer effort was

substantially higher. For example, our struggle to find a suitable way to program more interesting

codes for the vector-SIMD pattern is anecdotal evidence of the broader challenge of programming

such accelerators. These qualitative big steps impact the high-level programming models and ability

of compilers to generate quality code for each style.
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5 Evaluation Results

In this section, we first compare tile configurations based on their cycle time and area before running

four microbenchmarks on the baseline MIMD, vector-SIMD, and VT tiles with no microarchitec-

tural optimizations. We then explore the impact of various microarchitectural optimizations, and

compare implementation efficiency and area-normalized performance of the MIMD, vector-SIMD,

and VT patterns for the six application kernels.

5.1 Cycle Time and Area Comparison

Tile cycle times vary from 1.10–1.49 ns (see Table 1), with critical paths usually passing through

the crossbar that connects cores to individual data cache banks. Figure 14 shows the area break-

down of the tiles normalized to a mimd-c4r32 tile, and Figure 15 depicts three example VLSI

layouts. The caches contribute the most to the area of each tile. Note that a multi-core vector-

SIMD tile (vsimd-c4v1r256+bi) is 20% larger than a multi-core MIMD tile with the same number

of long-latency functional units and the same total number of physical registers (mimd-c4r256)

due to the sophisticated VMU and the extra integer ALUs per bank. A multi-lane vector-SIMD

tile (vsimd-c1v4r256+bi) is actually 16% smaller than the mimd-c4r256 tile because the increased

area overheads are amortized across four lanes. Note that we added additional buffer space to the

multi-lane tiles to balance the performance across vector tiles, resulting in similar area usage of the

memory unit for both multi-core and multi-lane vector tiles. Across all vector tiles, the overhead of

the embedded control processor is less than 5%, since it shares long-latency functional units with

the vector unit.
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Figure 14: Area for Tile Configurations – Area breakdown for each of the 25 tile configurations normalized
to the mimd-c4r32 tile. (adapted from [16])
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(a) mimd-c4r256 (b) vt-c4v1r256+bi+2s+d (c) vt-c1v4r256+bi+2s

Figure 15: Example VLSI Layouts – ASIC layout designs for mimd-c4, vt-c4v1r256+bi+2s+d, and
vt-c1v4r256+bi+2s with individual cores/lanes and the memory crossbar highlighted.

Comparing a multi-core VT tile (vt-c4v1r256+bi) to a multi-core vector-SIMD tile (vsimd-c4v1r256+bi)

shows the area overhead of the extra VT mechanisms is only ≈6%. The VT tile includes a PVFB

instead of a vector flag register file, causing the register file area to decrease and the control area

to increase. There is also a small area overhead due to the extra VT instruction cache. For multi-

lane tiles, these VT overheads are amortized across four lanes making them negligible (compare

vt-c1v4r256+bi+2s vs. vsimd-c1v4r256+bi).

5.2 Microbenchmark Results without Microarchitectural Optimizations

Figure 16 compares the microbenchmark results between the baseline MIMD, vector-SIMD, and

VT tiles. Note that these tiles do not implement any microarchitectural optimizations described in

Section 3.3, 3.4, and 3.5. The microbenchmarks are sorted by irregularity. As you go down the

rows, the microbenchmark gets more irregular (see active µT distribution in Table 3).

Figure 16(a), 16(b), and 16(c) show the impact of increasing the number of physical registers per

core or lane. For mimd-c4r*, increasing the number of µTs from 1 to 2 improves area-normalized

performance but at an energy cost. The energy increase is due to a larger register file (now 64

registers per core) and more control overhead. Supporting more than two µTs reduces performance

due to the non-trivial start-up overhead required to spawn and join the additional µTs and a longer

cycle time. In the vsimd-c4v1 tile and the vt-c4v1 tile with a unified vector register file, adding more

vector register elements increases hardware vector length and improves temporal amortization of
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Figure 16: Implementation Efficiency and Area-Normalized Performance for Baseline MIMD, vector-
SIMD, and VT Tiles Running Microbenchmarks – Results for the mimd-c4*, vsimd-c4v1*, and vt-c4v1*
tiles running four microbenchmarks. Energy vs. performance / area results are shown on the left. Energy
and performance/area are normalized to the mimd-c4r32 configuration. Energy breakdowns are shown on the
right. In (d), vt-c4v1r256 (outside figure) uses approximately 6× as much energy (78µJ per task) and has
11× poorer performance normalized by area than mimd-c4r32.
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the CP, instruction cache, and control energy. At 256 registers, however, the larger access energy

of the unified register file outweighs the benefits of increased vector length. The performance also

decreases since the access time of the register file becomes critical. To mitigate these overheads, we

consider banking the vector register file and adding per-bank integer ALUs (Section 3.3), and the

results are presented in the next section (Figure 17).

As shown in Figure 16(d), adding more registers to the VT tile when running bsearch results

in worse area-normalized performance and worse energy consumption. This is due to the high

irregularity of the microbenchmark. According to the active µT distribution statistics in Table 3, only

1-25% of the µTs were active 77.6% of the time. Without any microarchitectural optimizations such

as density-time execution (Section 3.3) and dynamic fragment convergence (Section 3.4), increase

in the vector length means that more time is spent on inactive µTs, since the execution time is

proportional to the vector length rather than the number of active µTs. On the other hand, vector

flags used in the hand-coded bsearch for vector-SIMD, and conditional move assembly instructions

used in the hand-optimized bsearch-cmv, which encode data-dependent conditionals, do not splinter

a vector into many fragments of only a few active µTs each. As a result, the trend looks more

similar to the microbenchmarks above. See how microarchitectural optimizations such as density-

time execution and dynamic fragment convergence help to achieve better energy efficiency and

area-normalized performance in the next section (Figure 18).

For regular DLP (Figure 16(a) and 16(b)) and mild irregular DLP (Figure 16(c)), vector tiles

surpass the MIMD tiles in both energy efficiency and area-normalized performance. For highly

irregular DLP (Figure 16(d)), the VT tile without any microarchitectural optimizations performs

worse than the MIMD tile. The area overhead, and some other overheads including the vector fetch

instruction and the µT stop instruction of the VT tile when compared to the vector-SIMD tile are

exposed because the microbenchmarks only execute 1–10 µT instructions (see Table 2) for a short

period of time. A fairer comparison among vector tiles with microarchitectural optimizations are

presented in Section 5.4.

5.3 Microarchitectural Tradeoffs

Figure 17 shows the impact of register file banking and adding per-bank integer ALUs when exe-

cuting bsearch-cmv. Banking a register file with 128 entries reduces register file access energy but

decreases area-normalized performance due to bank conflicts (see vt-c4v1+b configuration). Adding

per-bank integer ALUs partially offsets this performance loss (see vt-c4v1+bi configuration). With

the additional ALUs, a VT tile with a banked register file improves both performance and energy

versus a VT tile with a unified register file. Figure 14 shows that banking the vector register file

reduces the register file area by a factor of 2×, while adding local integer ALUs in a banked design

only modestly increases the integer and control logic area. Based on analyzing results across many
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Figure 17: Impact of Additional Physical Registers, Intra-Lane Register File Banking, and Additional
Per-Bank Integer ALUs – Results for multi-core MIMD and VT tiles running the bsearch-cmv microbench-
mark.
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Figure 18: Impact of Density-Time Execution and Stack-Based Convergence Schemes – Results for the
mimd-c4r128 and vt-c4v1r256+bi tiles running bsearch and bsearch-cmv. 2-stack VT tiles have better per-
formance and energy efficiency than the MIMD tile. In (b), FIFO (extends outside figure) uses approximately
59µJ per task.

tile configurations and applications, we determined that banking the vector register file and adding

per-bank integer ALUs was the optimal choice for all vector tiles.

Figure 18 shows the impact of adding density-time execution and dynamic fragment conver-

gence to a multi-core VT tile running bsearch. Adding just density-time execution eliminates sig-

nificant wasted work after divergence, improving area-normalized performance by 2.5× and reduc-

ing energy by 2×. Density-time execution is less useful on multi-lane configurations due to the

additional constraints required for compression. Our stack-based convergence schemes are a differ-

ent way of mitigating divergence by converging µTs when possible. For bsearch, the 2-stack PVFB

forces µTs to stay on the same loop iteration, improving performance by 6× and reducing energy by

5× as compared to the baseline FIFO PVFB. Combining density-time and a 2-stack PVFB has little

impact here as the 2-stack scheme already removes most divergence (see Table 3). Our experience

with other microbenchmarks and application kernels suggest that for codes where convergence is
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Figure 19: Impact of Memory Coalescing – Results for multi-lane VT tile running vvadd.

simply not possible the addition of density-time execution can have significant impact. Note that

replacing branches with explicit conditional moves (bsearch-cmv) performs better than dynamic op-

timizations for µT branches, but µT branches are more general and simpler to program for irregular

DLP codes. Table 1 and Figure 14 show that the 2-stack PVFB and density-time execution have little

impact on area and cycle time. Based on our analysis, the 2-stack PVFB is used for both multi-core

and multi-lane VT tiles, while density-time execution is only used on multi-core VT tiles.

Figure 19 illustrates the benefit of vector memory accesses versus µT memory accesses on

a multi-lane VT tile running vvadd. Using µT memory accesses limits opportunities for access-

execute decoupling and requires six additional µT instructions for address generation, resulting in

over 5× worse energy and 7× worse performance for vvadd. Memory coalescing recoups some

of the lost performance and energy efficiency, but is still far behind vector instructions. This small

example hints at key differences between SIMT and VT. Current SIMT implementations use a very

large number of µTs (and large register files) to hide memory latency instead of a decoupled control

thread, and rely on dynamic coalescing instead of true vector memory instructions. However, ex-

ploiting these VT features requires software to factor out the common work from the µTs. Also note

that memory coalescing can still help µT memory accesses used for non-structured data accesses in

VT implementations (see Figure 20(f)).

5.4 Application Kernel Results

Figure 20 compares the application kernel results between the MIMD, vector-SIMD, and VT tiles.

All vector tiles include a banked vector register file with per-bank integer ALUs. Both VT tiles

(multi-core and multi-lane) use the 2-stack dynamic fragment convergence scheme. On top of these

microarchitectural optimizations, the multi-core VT tile implements density-time execution, and

one of the multi-lane VT tile includes a dynamic memory coalescer. The upper row plots over-

all energy/task against performance, while the lower row plots energy/task against area-normalized

performance to indicate expected throughput from a given silicon budget for a highly parallel work-
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Figure 20: Implementation Efficiency and Performance for MIMD, vector-SIMD, and VT Patterns
Running Application Kernels – Each column is for different kernel. Legend at top. mimd-c4r256 is sig-
nificantly worse and lies outside the axes for some graphs. There are no vector-SIMD implementations for
strsearch and physics due to difficulty of implementing complex irregular DLP in hand-coded assembly.
mcore = multi-core vector-SIMD/VT tiles, mlane = multi-lane vector-SIMD/VT tiles, mlane+mc = multi-
lane VT tile with a dynamic memory coalescer, r32 = MIMD tile with 32 registers (i.e., one µT). (adapted
from [16])

load. Kernels are ordered to have increasing irregularity from left to right. We draw several broad

insights from these results.

First, we observed that adding more µTs to a multi-core MIMD tile is not particularly effective,

especially when area is considered. We found parallelization and load-balancing become more

challenging for the complex application kernels, and adding µTs can hurt performance in some

cases due to increased cycle time and non-trivial interactions with the memory system.

Second, we observed that the best vector-based machines are generally faster and/or more

energy-efficient than the MIMD cores though normalizing for area reduces the relative advantage,

and for some irregular codes the MIMD cores perform slightly better (e.g., strsearch) though at a

greater energy cost.

Third, comparing vector-SIMD and VT on the first four kernels, we see VT is more efficient than

vector-SIMD for both multi-core single-lane (c4v1) and single-core multi-lane (c1v4) design points.

Note we used hand-optimized vector-SIMD code but compiled VT code for these four kernels. One

reason VT performs better than vector-SIMD, particularly on multi-lane viterbi and kmeans, is that
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vector-fetch instructions more compactly encode work than vector instructions, reducing pressure

on the VIU queue and allowing the CT to run ahead faster.

Fourth, comparing c4v1 versus c1v4 vector machines, we see that the multi-lane vector designs

are generally more energy-efficient than multi-core vector designs as they amortize control overhead

over more datapaths. Another advantage we observed for multi-lane machines was that we did

not have to partition and load-balance work across multiple cores. Multi-core vector machines

sometimes have a raw performance advantage over multi-lane vector machines. Our multi-lane tiles

have less address bandwidth to the shared data cache, making code with many vector loads and

stores perform worse (kmeans and physics). Lack of density-time execution and no ability to run

independent control threads also reduces efficiency of multi-lane machines on irregular DLP code.

However, these performance advantages for multi-core vector machines usually disappear once area

is considered, except for the most irregular kernel strsearch. The area difference is mostly due to

the disparity in aggregate instruction cache capacity.

Overall, our results suggest a single-core multi-lane VT tile with the 2-stack PVFB and a banked

register file with per-bank integer ALUs (vt-c1v4r256+bi+2s) is a good design point for Maven.
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6 Conclusions

Effective data-parallel accelerators must handle regular and irregular DLP efficiently and still retain

programmability. Our detailed VLSI results confirm that vector-based microarchitectures are more

area and energy efficient than scalar-based microarchitectures, even for fairly irregular data-level

parallelism. We introduced Maven, a new simpler vector-thread microarchitecture based on the tra-

ditional vector-SIMD microarchitecture, and showed that it is superior to traditional vector-SIMD

architectures by providing both greater efficiency and easier programmability. Maven’s efficiency

is improved with several new microarchitectural optimizations, including efficient dynamic conver-

gence for microthreads and ALUs distributed close to the banks within a banked vector register

file.

In future work, we are interested in a more detailed comparison of VT to the popular SIMT

design pattern. Our initial results suggest that SIMT will be less efficient though easier to program

than VT. We are also interested in exploring whether programming environment improvements

can reduce the need of VT or SIMT mechanisms to further improve efficiency while maintaining

programmability, and whether hybrid machines containing both pure MIMD and pure SIMD might

be more efficient than attempting to execute very irregular code on SIMD hardware.
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